A structural bionic design process is systematically presented for lightweight mechanical structures. By mimicking biological excellent structural principles, the stiffening ribs of a machining table and a moving colu...A structural bionic design process is systematically presented for lightweight mechanical structures. By mimicking biological excellent structural principles, the stiffening ribs of a machining table and a moving column were redesigned for better load-bearing efficiency. Finite element method(FEM) simulation and model experiments were carried out for performance verification, which showed the increase of structural static and dynamic performance. Structural bionic offers a new solution to change conventional structures for high specific stiffness.展开更多
Cutting tools are known as the“productivity”of the manufacturing industry,which affects the production efficiency and quality of the workpiece,and has become the focus of research and attention in academia and indus...Cutting tools are known as the“productivity”of the manufacturing industry,which affects the production efficiency and quality of the workpiece,and has become the focus of research and attention in academia and industry.However,traditional cutting tools often suffer from adhesion or wear during the cutting process,which considerably reduces the cutting efficiency and service life of the tools,and makes it difficult to meet current production requirements.To solve the above problems,scholars have introduced bionics into the tool’s design,applying the microscopic structure of the biological surface to the tool surface to alleviate the tool’s failure.This paper mainly summarizes the research progress of bionic textured cutting tools.Firstly,categorize whether the bionic texture design is inspired by a single organism or multiple organisms.Secondly,it is discussed that the non-smooth surface of the biological surface has five characteristics:hydrophilic lubricity,wear resistance,drag reduction and hydrophobicity,anti-adhesion,and arrangement,and the non-smooth structure of these different characteristics are applied to the surface of the tool is designed with bionic texture.Furtherly,the cutting performance of bionic textured cutting tools is discussed.The anti-friction and wear-resisting mechanism of bionic textured cutting tools is analyzed.Finally,some pending problems and perspectives have been proposed to provide new inspirations for the design of bionic textured cutting tools.展开更多
In order to solve the problem which may be generated in the case of manual replacement of the belt conveyor sealing leather, such as the operation space is small, the work efficiency is low and the finger is easy to b...In order to solve the problem which may be generated in the case of manual replacement of the belt conveyor sealing leather, such as the operation space is small, the work efficiency is low and the finger is easy to be scratched, Using the principle of simulated bionics, through theoretical analysis and experimental verification,a tool was designed to replace the belt conveyor sealing leather. The tool includes a limit device, feeding device,U-shaped handle three parts, suitable for the replacement of various types and sizes of belt conveyor sealing leather. Use this tool to replace the belt conveyor sealing leather, the results show that: 1) The effect of replace belt conveyor sealing leather is good, belt conveyor sealing leather flat and solid. 2) The replacement proces saveraged 1. 77 min, shorter than the original method of more than 8 min. 3) Direct contact of the fingers and the metal baffle edge was avoided, so as to reduce the chances of a finger injury.展开更多
基金Natural Science Foundation of China (50975012)Scientific Research Foundation for the Outstanding Young Scientist of Shandong Province(2008BS05007)Student Innovation Foundation of Liaocheng University (#SRT10172QC2)
文摘A structural bionic design process is systematically presented for lightweight mechanical structures. By mimicking biological excellent structural principles, the stiffening ribs of a machining table and a moving column were redesigned for better load-bearing efficiency. Finite element method(FEM) simulation and model experiments were carried out for performance verification, which showed the increase of structural static and dynamic performance. Structural bionic offers a new solution to change conventional structures for high specific stiffness.
基金supported by National Natural Science Foundation of China(52175431)Natural Science Foundation of Tianjin of China(22JCZDJC00730).
文摘Cutting tools are known as the“productivity”of the manufacturing industry,which affects the production efficiency and quality of the workpiece,and has become the focus of research and attention in academia and industry.However,traditional cutting tools often suffer from adhesion or wear during the cutting process,which considerably reduces the cutting efficiency and service life of the tools,and makes it difficult to meet current production requirements.To solve the above problems,scholars have introduced bionics into the tool’s design,applying the microscopic structure of the biological surface to the tool surface to alleviate the tool’s failure.This paper mainly summarizes the research progress of bionic textured cutting tools.Firstly,categorize whether the bionic texture design is inspired by a single organism or multiple organisms.Secondly,it is discussed that the non-smooth surface of the biological surface has five characteristics:hydrophilic lubricity,wear resistance,drag reduction and hydrophobicity,anti-adhesion,and arrangement,and the non-smooth structure of these different characteristics are applied to the surface of the tool is designed with bionic texture.Furtherly,the cutting performance of bionic textured cutting tools is discussed.The anti-friction and wear-resisting mechanism of bionic textured cutting tools is analyzed.Finally,some pending problems and perspectives have been proposed to provide new inspirations for the design of bionic textured cutting tools.
文摘In order to solve the problem which may be generated in the case of manual replacement of the belt conveyor sealing leather, such as the operation space is small, the work efficiency is low and the finger is easy to be scratched, Using the principle of simulated bionics, through theoretical analysis and experimental verification,a tool was designed to replace the belt conveyor sealing leather. The tool includes a limit device, feeding device,U-shaped handle three parts, suitable for the replacement of various types and sizes of belt conveyor sealing leather. Use this tool to replace the belt conveyor sealing leather, the results show that: 1) The effect of replace belt conveyor sealing leather is good, belt conveyor sealing leather flat and solid. 2) The replacement proces saveraged 1. 77 min, shorter than the original method of more than 8 min. 3) Direct contact of the fingers and the metal baffle edge was avoided, so as to reduce the chances of a finger injury.