期刊文献+
共找到775篇文章
< 1 2 39 >
每页显示 20 50 100
Bionic lightweight design of limb leg units for hydraulic quadruped robots by additive manufacturing and topology optimization
1
作者 Huaizhi Zong Junhui Zhang +6 位作者 Lei Jiang Kun Zhang Jun Shen Zhenyu Lu Ke Wang Yanli Wang Bing Xu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期1-13,共13页
Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadr... Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency. 展开更多
关键词 Additive manufacturing bionic lightweight design Limb leg unit Quadruped robot Trajectory tracking
下载PDF
Adsorption Performance of Sliding Wall-Climbing Robot 被引量:5
2
作者 LI Jun GAO Xueshan +3 位作者 FAN Ningjun LI Kejie JIANG Zhihong JIANG Zhijian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第6期733-741,共9页
Sliding wall-climbing robot (SWCR) is applied worldwide for its continuous motion, however, considerable air leakage causes two problems: great power consumption and big noise, and they constraint the robot's comp... Sliding wall-climbing robot (SWCR) is applied worldwide for its continuous motion, however, considerable air leakage causes two problems: great power consumption and big noise, and they constraint the robot's comprehensive performance. So far, effective theoretical model is still lacked to solve the problems. The concept of SWCR's adsorption performance is presented, and the techniques of improving utilization rate of given adsorption force and utilization rate of power are studied respectively to improve SWCR's adsorption performance. The effect of locomotion mechanism selection and seal's pressure allocation upon utilization rate of given adsorption force is discussed, and the theoretical way for relevant parameters optimization are provided. The directions for improving utilization rate of power are pointed out based on the detail analysis results of suction system's thermodynamics and hydrodynamics. On this condition, a design method for SWCR-specific impeller is presented, which shows how the impeller's key parameters impact its aerodynamic performance with the aid of computational fluid dynamics (CFD) simulations. The robot prototype, BIT Climber, is developed, and its functions such as mobility, adaptability on wall surface, payload, obstacle ability and wall surface inspection are tested. Through the experiments for the adhesion performance of the robot adsorption system on the normal wall surface, at the impeller's rated rotating speed, the total adsorption force can reach 237.2 N, the average effective negative pressure is 3.02 kPa and the design error is 3.8% only, which indicates a high efficiency. Furthermore, it is found that the robot suction system's static pressure efficiency reaches 84% and utilization rate of adsorption force 81% by the experiment. This thermodynamics model and SWCR-specific impeller design method can effectively improve SWCR's adsorption performance and expand this robot applicability on the various walls. A sliding wall-climbing robot with high adhesion efficiency is developed, and this robot has the features of light body in weight, small size in structure and good capability in payload. 展开更多
关键词 wall-climbing robot adsorption performance centrifugal impeller CFD simulation
下载PDF
Development and control of flexible pneumatic wall-climbing robot 被引量:7
3
作者 王志恒 鲍官军 +1 位作者 张立彬 杨庆华 《Journal of Central South University》 SCIE EI CAS 2009年第6期961-970,共10页
A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It h... A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It has many characteristics of low-cost,lightweight,simple structure and good flexibility. Its operating principle was introduced. Then three basic locomotion modes,which are linear motion,curvilinear motion and crossing the orthogonal planes,were presented. The safety conditions of WALKMAN-I were discussed and built. Finally,the control system was designed and experiments were carried out. Experimental results show that WALKMAN-I is able to climb on the vertical wall surface along a straight line or a curved path,and has the ability of crossing orthogonal planes and obstacles. The maximum rotation angle reaches 90°,the maximum velocity reaches 5 mm/s,and the rotation angle and the moving velocity of WALKMAN-I can be easily controlled. 展开更多
关键词 wall-climbing robot locomotion mode flexible pneumatic actuator (FPA) flexible pneumatic spherical joint safety analysis
下载PDF
Research on Alternatively Moving Vacuum Absorbing Wall-climbing Robot
4
作者 姜洪源 李曙生 +2 位作者 潘沛霖 昌先国 高学山 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1999年第1期8-13,共6页
In conection with the complex working-surroundings of the wall-climbing Robot, this paper researched akind of alternatively moving mechanism with good obstacle-surmounting ability and high moving speed, making use oft... In conection with the complex working-surroundings of the wall-climbing Robot, this paper researched akind of alternatively moving mechanism with good obstacle-surmounting ability and high moving speed, making use ofthe thought of bionics. This paper designed a kind of self-adjusting multi-vacuum sucker. Furthermore, it employedthe theory of vacuum system to establish the work mathematics madel of control switch to are sucking disc and presented the design parameter of the control switch. In addition, this paper made use of the thought of bionics to design aobstacle-surmounting mechanism used in wall-climbing robot. Also it employed the theory Of robotics to analyze the kinematics and the dynamics movement of die robot. 展开更多
关键词 Altermatively MOVING MECHANISM wall-climbing robot SELF-ADJUSTING multi-vacuum SUCKER obstaclesurmounting MECHANISM
下载PDF
Fault detection and identification based on combining logic and model in a wall-climbing robot
5
作者 Yong JIANG Hongguang WANG +1 位作者 Lijin FANG Mingyang ZHAO 《控制理论与应用(英文版)》 EI 2009年第2期157-162,共6页
A combined logic- and model-based approach to fault detection and identification (FDI) in a suction foot control system of a wall-climbing robot is presented in this paper. For the control system, some fault models ... A combined logic- and model-based approach to fault detection and identification (FDI) in a suction foot control system of a wall-climbing robot is presented in this paper. For the control system, some fault models are derived by kinematics analysis. Moreover, the logic relations of the system states are known in advance. First, a fault tree is used to analyze the system by evaluating the basic events (elementary causes), which can lead to a root event (a particular fault). Then, a multiple-model adaptive estimation algorithm is used to detect and identify the model-known faults. Finally, based on the system states of the robot and the results of the estimation, the model-unknown faults are also identified using logical reasoning. Experiments show that the proposed approach based on the combination of logical reasoning and model estimating is efficient in the FDI of the robot. 展开更多
关键词 FDI Fault tree Model estimation Logic reasoning wall-climbing robot
下载PDF
High-performance wall-climbingrobot for inspection and maintenance
6
作者 邵洁 高学山 +4 位作者 戴福全 宗成国 白阳 郭文增 李军 《Journal of Beijing Institute of Technology》 EI CAS 2014年第3期383-389,共7页
A wall-climbing robot that can continuously work on many types of wall surfaces has been developed. This robot based on low-vacuum adsorption principle consists of a locomotion mecha- nism, a sealing device, a fluid m... A wall-climbing robot that can continuously work on many types of wall surfaces has been developed. This robot based on low-vacuum adsorption principle consists of a locomotion mecha- nism, a sealing device, a fluid machine and a detecting system. The adsorption force is analyzed in details and its influencing factors are given. The robot prototype, which has the features of high ad- hesion efficiency, light body in weight, small size in structure and good capability in payload, is test- ed in outdoor and indoor environments. Through the experiments, the influences of the impeller slit and the seal clearance are discussed. In addition, the robot functions such as adsorption perform- ance, locomotion performance and wall adaptability are tested by experiments. The experiments have verified that the robot not only can climb on many types of wall surfaces, but also has outstand- ing locomotion ability and payload capacity. 展开更多
关键词 wall-climbing robot low-vacuum adsorption adsorption force impeller slit seal clear-ance
下载PDF
On Transit Gait Programming of Six-legged Wall-climbing Robot
7
作者 钱晋武 龚振邦 张启先 《Advances in Manufacturing》 SCIE CAS 1997年第1期42-47,共6页
Transit gait programming is a key problem for a multi-legged robot to climb automatically from the ground up the wall, as well as between wall intersections. In this paper, a new idea is put forward by which the compl... Transit gait programming is a key problem for a multi-legged robot to climb automatically from the ground up the wall, as well as between wall intersections. In this paper, a new idea is put forward by which the complex transit gait is decomposed into a sequence of two relatively simpler parts - single-leg motion and body pitching motion. An algorithm based on the above concept shows its feasibility and effectiveness in the graphic kinematics simulation. 展开更多
关键词 wall-climbing robot. ground-to-wall transit gait kinematics simulation gait programming
下载PDF
Research on Gait Trajectory Planning of Wall-Climbing Robot Based on Improved PSO Algorithm
8
作者 Jian Li Xianlin Shi +4 位作者 Peng Liang Yanjun Li Yilin Lv Mingyue Zhong Zezhong Han 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期1747-1760,共14页
In order to reduce the labor intensity of high-altitude workers and realize the cleaning and maintenance of high-rise building exteriors,this paper proposes a design for a 4-DOF bipedal wall-climbing bionic robot insp... In order to reduce the labor intensity of high-altitude workers and realize the cleaning and maintenance of high-rise building exteriors,this paper proposes a design for a 4-DOF bipedal wall-climbing bionic robot inspired by the inchworm’s movement.The robot utilizes vacuum adsorption for vertical wall attachment and legged movement for locomotion.To enhance the robot’s movement efficiency and reduce wear on the adsorption device,a gait mimicking an inchworm’s movement is planned,and foot trajectory planning is performed using a quintic polynomial function.Under velocity constraints,foot trajectory optimization is achieved using an improved Particle Swarm Optimization(PSO)algorithm,determining the quintic polynomial function with the best fitness through simulation.Finally,through comparative experiments,the climbing time of the robot closely matches the simulation results,validating the trajectory planning method’s accuracy. 展开更多
关键词 bionic robot wall-climbing robot PSO Gait planning Trajectory planning
原文传递
Dynamic Bending of Bionic Flexible Body Driven by Pneumatic Artificial Muscles(PAMs) for Spinning Gait of Quadruped Robot 被引量:21
9
作者 LEI Jingtao YU Huangying WANG Tianmiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期11-20,共10页
The body of quadruped robot is generally developed with the rigid structure. The mobility of quadruped robot depcnds on the mechanical properties of the body mechanism, It is difficult for quadruped robot with rigid s... The body of quadruped robot is generally developed with the rigid structure. The mobility of quadruped robot depcnds on the mechanical properties of the body mechanism, It is difficult for quadruped robot with rigid structure to achieve better mobility walking or running in the unstructured environment. A kind of bionic flexible body mechanism for quadruped robot is proposed, which is composed of one bionic spine and four pneumatic artificial muscles(PAMs). This kind of body imitates the four-legged creatures' kinematical structure and physical properties, which has the characteristic of changeable stiff'hess, lightweight, flexible and better bionics. The kinematics of body bending is derived, and the coordinated movement between the flexible body and legs is analyzed. The relationship between the body bending angle and the PAM length is obtained. The dynamics of the body bending is derived by the floating coordinate method and Lagrangian method, and the driving tbrce of PAM is determined. The experiment of body bending is conductcd, and the dynamic bending characteristic of bionic flexible body is evaluated. Experimental results show that the bending angle of the bionic flexible body can reach 18. An innovation body mechanism for quadruped robot is proposed, which has the characteristic of flexibility and achieve bending by changing gas pressure of PAMs. The coordinated movement of the body and legs can achieve spinning gait in order to improve the mobility of quadruped robot. 展开更多
关键词 quadruped robot bionic flexible body PAM spinning gait DYNAMICS
下载PDF
Bionic Mechanism and Kinematics Analysis of Hopping Robot Inspired by Locust Jumping 被引量:21
10
作者 Diansheng Chen Junmao Yin Kai Zhao Wanjun Zheng Tianmiao Wang 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第4期429-439,共11页
A flexible-rigid hopping mechanism which is inspired by the locust jumping was proposed, and its kinematic characteris- tics were analyzed. A series of experiments were conducted to observe locust morphology and jumpi... A flexible-rigid hopping mechanism which is inspired by the locust jumping was proposed, and its kinematic characteris- tics were analyzed. A series of experiments were conducted to observe locust morphology and jumping process. According to classic mechanics, the jumping process analysis was conducted to build the relationship of the locust jumping parameters. The take-offphase was divided into four stages in detail. Based on the biological observation and kinematics analysis, a mechanical model was proposed to simulate locust jumping. The forces of the flexible-rigid hopping mechanism at each stage were ana- lyzed. The kinematic analysis using pseudo-rigid-body model was described by D-H method. It is confirmed that the proposed bionic mechanism has the similar performance as the locust hind leg in hopping. Moreover, the jumping angle which decides the jumping process was discussed, and its relation with other parameters was established. A calculation case analysis corroborated the method. The results of this paper show that the proposed bionic mechanism which is inspired by the locust hind limb has an excellent kinematics performance, which can provide a foundation for design and motion planning of the hopping robot. 展开更多
关键词 hopping robot flexible-rigid mechanism bionic mechanism KINEMATICS
下载PDF
Highly adaptive triboelectric tactile sensor on the foot of autonomous wall-climbing robots for detecting the adhesion state and avoiding the hazard
11
作者 Zhaoyang Wang Jianhua Liu +8 位作者 Ziyu Wang Chang Liu Qingyu Chen Chaofan Zhang Wenbo Zhang Jicang Si Xiu Xiao Peng Xu Minyi Xu 《Nano Research》 SCIE EI CSCD 2024年第7期6518-6526,共9页
Due to the excellent maneuverability and obstacle crossing of legged robots,it is possible for an autonomous legged wallclimbing robots to replace manual inspection of ship exterior panels.However,when the magnetic ad... Due to the excellent maneuverability and obstacle crossing of legged robots,it is possible for an autonomous legged wallclimbing robots to replace manual inspection of ship exterior panels.However,when the magnetic adsorption legged wallclimbing robot steps on the convex point or convex line of the wall,or even when the robot missteps,the robot is likely to detach from the ferromagnetic wall.Therefore,this paper proposes a tactile sensor for the legged magnetic adsorption wall-climbing robot to detect the magnetic adsorption state and improve the safety of the autonomous crawling of the robot.The tactile sensor mainly comprises a three-dimensional(3D)-printed shell,a tactile slider,and three isometric sensing units,with an optimized geometry.The experiment shows that the triboelectric tactile sensor can monitor the sliding depth of the tactile slider and control the light-emitting device(LED)signal light.In addition,in the demonstration experiment of detecting the adsorption state of the robot's foot,the triboelectric tactile sensor has strong adaptability to various ferromagnetic wall surfaces.Finally,this study establishes a robot gait control system to verify the feedback control ability of the triboelectric tactile sensor.The results show that the robot equipped with the triboelectric tactile sensor can recognize the dangerous area on the crawling wall and autonomously avoid the risk.Therefore,the proposed triboelectric tactile sensor has great potential in realizing the tactile sensing ability of robots and enhancing the safety and intelligent inspection of ultra-large vessels. 展开更多
关键词 legged wall-climbing robot ship inspection tactile perception triboelectric sensor
原文传递
Motor Driving Leg Design for Bionic Crab-like Robot 被引量:4
12
作者 Wang Li-quan, Qu Xiao-rong, Meng Qing-xin, Yuan Peng, Wang Mo-nanCollege of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China 《哈尔滨工程大学学报(英文版)》 2002年第2期72-77,共6页
The paper presents the design of walking leg for bionics crab-like robot, which is driven with micro servo motor. The kinematic characteristics of the bionics machine are analysed for optimized structure parameters, w... The paper presents the design of walking leg for bionics crab-like robot, which is driven with micro servo motor. The kinematic characteristics of the bionics machine are analysed for optimized structure parameters, which has been used in the robot design. A three closed loop motor control system structure for joint driver is also given, as well as the multi-joint driving system for walking robot leg. 展开更多
关键词 bionicS crab-liked robot joint driver SERVO MOTOR three-closed-loop
下载PDF
Analysis on pivot turning of quadruped robot with bionic flexible body driven by the PAMs 被引量:1
13
作者 雷静桃 Yu Huangying Wu Zhizheng 《High Technology Letters》 EI CAS 2014年第3期288-294,共7页
The pivot turning function of quadruped bionic robots can improve their mobility in unstructured environment.A kind of bionic flexible body mechanism for quadruped robot was proposed in this paper,which is composed of... The pivot turning function of quadruped bionic robots can improve their mobility in unstructured environment.A kind of bionic flexible body mechanism for quadruped robot was proposed in this paper,which is composed of one bionic spine and four pneumatic artificial muscles(PAMs).The coordinated movement of the bionic flexible body and the leg mechanism can achieve pivot turning gait.First,the pivot turning gait planning of quadruped robot was analyzed,and the coordinated movement sequence chart of pivot turning was presented.Then the kinematics modeling of leg side swing and body bending for pivot turning was derived,which should meet the condition of the coordinated movement between bionic flexible body and leg mechanism.The PAM experiment was conducted to analyze its contraction characteristic.The study on pivot turning of the quadruped robot will lay a theoretical foundation for the further research on dynamic walking stability of the quadruped robot in unstructured environment. 展开更多
关键词 quadruped robot bionic flexible body pivot turning pneumatic artificial muscle (PAM)
下载PDF
Stability margin of the quadruped bionic robot with spinning gait 被引量:2
14
作者 雷静桃 Jiang Yunqi Ren Mingming 《High Technology Letters》 EI CAS 2017年第3期229-237,共9页
Spinning gait is valuable for quadruped robot,which can be used to avoid obstacles quickly for robot walking in unstructured environment. A kind of bionic flexible body is presented for quadruped robot to perform the ... Spinning gait is valuable for quadruped robot,which can be used to avoid obstacles quickly for robot walking in unstructured environment. A kind of bionic flexible body is presented for quadruped robot to perform the spinning gait. The spinning gait can be achieved by coordinated movement of body laterally bending and legs swing,which can improve the mobility of robot walking in the unstructured environments. The coordinated movement relationship between the body and the leg mechanism is presented. The stability of quadruped robot with spinning gait is analyzed based on the center of gravity( COG) projection method. The effect of different body bending angle on the stability of quadruped robot with spinning gait is mainly studied. For the quadruped robot walking with spinning gait,during one spinning gait cycle,the supporting polygon and the trajectory of COG projection point under different body bending angle are calculated. Finally,the stability margin of quadruped robot with spinning gait under different body bending angle is determined,which can be used to evaluate reasonableness of spinning gait parameters. 展开更多
关键词 quadruped robot bionic body spinning gait stability margin body bending
下载PDF
Modelling of thrust generated by oscillation caudal fin of underwater bionic robot
15
作者 Xinyan YIN Lichao JIA +1 位作者 Chen WANG Guangming XIE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第5期601-610,共10页
A simplified model of the thrust force is proposed based on a caudal fin oscillation of an underwater bionic robot. The caudal fin oscillation is generalized by cen- tral pattern generators (CPGs). In this model, th... A simplified model of the thrust force is proposed based on a caudal fin oscillation of an underwater bionic robot. The caudal fin oscillation is generalized by cen- tral pattern generators (CPGs). In this model, the drag coefficient and lift coefficient are the two critical parameters which are obtained by the digital particle image velocimetry (DPIV) and the force transducer experiment. Numerical simulation and physical experi- ments have been performed to verify this dynamic model. 展开更多
关键词 caudal fin oscillation thrust force underwater bionic robot digital particleimage velocimetry (DPIV) central pattern generator (CPG)
下载PDF
Planning on Bionic Walking Gait of Quadruped Robot over Rough Terrain
16
作者 LI Jun MIAO Xin-cong LIU An 《International Journal of Plant Engineering and Management》 2013年第1期20-29,共10页
A quadruped robot is more adjustable to a complex terrain than a wheeled or caterpillar robot to realize the continuous adjustable motions characterized by submissiveness and low energy consumption in basic control of... A quadruped robot is more adjustable to a complex terrain than a wheeled or caterpillar robot to realize the continuous adjustable motions characterized by submissiveness and low energy consumption in basic control of the quadruped robot over rough terrain. This paper presents a static walking mode of "altitude hold", which means to keep absolute altitude by controlling limbs adjustably on the basis of which biokinetics studies have shown that quadrupeds can move with almost the same body altitude over rough terrains characterized by a nearly horizontal relief. The gait design specifies several characteristic states of stance phase and swing phase for a quadruped robot and controls the phase sequence and phase of four legs through change of characteristic states. Furthermore, we design a robot control system to generate adjustable gaits and control the coordinative movement of robot joints. This planning method is tested through ADAMS and MATLAB interactive co-simulation; the quadruped robot which has 8 degrees of freedom (8-DOF) is used to simulate the motion over a terrain character- ized by randomly arranged humps. The results show that this method can make the quadruped robot capable to walk over certain rough terrain. 展开更多
关键词 quadruped robot walking gait rough terrain bionic
下载PDF
四足机器人腾空跳跃的轨迹优化与控制方法
17
作者 张秀丽 赵浩宇 +1 位作者 吴佳宁 许鹏 《北京交通大学学报》 CAS CSCD 北大核心 2024年第3期161-170,共10页
针对四足机器人难以跨越大尺寸障碍物的问题,提出了一种仿生腾空跳跃的轨迹优化控制方法 .首先,对马里努阿犬的越障运动进行测试和仿生学分析,得到腾空跳跃的参考轨迹.其次,根据摩擦锥、轨迹平滑、运动学和动力学等约束条件,基于轨迹优... 针对四足机器人难以跨越大尺寸障碍物的问题,提出了一种仿生腾空跳跃的轨迹优化控制方法 .首先,对马里努阿犬的越障运动进行测试和仿生学分析,得到腾空跳跃的参考轨迹.其次,根据摩擦锥、轨迹平滑、运动学和动力学等约束条件,基于轨迹优化的方法对仿生参考轨迹进行离线优化,生成四足机器人的期望跳跃轨迹,得到跳跃所需的足端位置、关节力矩和关节角度序列.再次,设计分阶段的跳跃控制器,采用关节和质心PD(Proportional Derivative)的组合控制策略,实现对期望跳跃轨迹的跟踪,采用变刚度虚拟模型控制实现对落地姿态的调整和足底力的缓冲.最后,在Webots仿真环境中完成了1 m高度的自由落地和跳跃0.75 m高度桌子的仿真实验.研究结果表明:仿生轨迹优化与控制算法能够使四足机器人跳跃大尺寸障碍物并且具有平稳落地的效果,对于提高四足机器人的高性能运动能力以及拓展其应用环境具有参考价值. 展开更多
关键词 四足机器人 仿生学 轨迹优化 跳跃 虚拟模型控制
下载PDF
仿生六足折纸机器人结构设计与运动分析
18
作者 曹东兴 贾艳超 +1 位作者 郭翔鹰 毛佳佳 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第8期1543-1555,共13页
针对现有折纸机器人组成结构单一,运动不够灵活的问题,将折纸结构与多足机器人设计相结合,耦合三浦折纸和六折痕折纸,提出新型的仿螃蟹六足折纸机器人设计方案,扩展了折纸机器人的运动构型,提升了折纸机器人的运动灵活性.在面对称假设下... 针对现有折纸机器人组成结构单一,运动不够灵活的问题,将折纸结构与多足机器人设计相结合,耦合三浦折纸和六折痕折纸,提出新型的仿螃蟹六足折纸机器人设计方案,扩展了折纸机器人的运动构型,提升了折纸机器人的运动灵活性.在面对称假设下,该机器人单足具有2个自由度,此时将机器人腿部顶点等效为关节,轴线折痕等效为连杆,建立机器人腿部的平面连杆等效模型,并以折面夹角为运动变量,通过仿真计算得出机器人足端的理论运动范围.利用楔形面板技术对折面增厚并避免相邻折面发生物理干涉,建模得到折纸仿螃蟹六足机器人的三维模型.基于平面连杆的等效模型,分析折面夹角与足端运动之间的联系,设计确定机器人的足端运动轨迹与运动步态.利用3D打印技术设计并制作折纸仿生六足机器人试验样机,基于STM32单片机控制实现了机器人三横向角步态运动.结果表明,该折纸仿生机器人可以实现平面构型到仿螃蟹构型的转换,在6条腿的协同运动下,机器人可以平稳地左右横向移动. 展开更多
关键词 六足机器人 仿生 六折痕折纸 三浦折纸 运动分析
下载PDF
机器人灵巧手研究综述
19
作者 刘伟 肖钊 +1 位作者 瞿寅朋 许守亮 《机械传动》 北大核心 2024年第9期167-176,共10页
机器人灵巧手可以模仿人类动作,完成复杂场景下的多种任务。机器人灵巧手的研究是开发智能人形机器人的关键技术之一。以机器人灵巧手的研究历程为核心,阐述了多指灵巧手的研究现状,分析了灵巧手的演化过程和研究进展。从自由度数目、... 机器人灵巧手可以模仿人类动作,完成复杂场景下的多种任务。机器人灵巧手的研究是开发智能人形机器人的关键技术之一。以机器人灵巧手的研究历程为核心,阐述了多指灵巧手的研究现状,分析了灵巧手的演化过程和研究进展。从自由度数目、驱动方式、机械传动方式和传感技术等方面探讨了灵巧手分类和特征,展望了灵巧手未来的发展趋势。 展开更多
关键词 机器人灵巧手 仿生技术 机械传动 感知技术
下载PDF
受海龟爬行与山羊行走启发的四足仿生移动机器人多步态规划及动力学分析
20
作者 芮宏斌 王天赐 +4 位作者 厍龙林 段凯文 李耒 郭旋 彭家璇 《工程设计学报》 CSCD 北大核心 2024年第3期309-318,共10页
为解决救援机器人运动速度慢、环境适应性差和步态单一等问题,参照海龟与山羊的生理结构,设计了一种四足仿生移动机器人。首先,根据海龟能在松软地面上爬行以及山羊运动能力强的特点,为机器人规划了仿海龟爬行和仿山羊行走两种步态以适... 为解决救援机器人运动速度慢、环境适应性差和步态单一等问题,参照海龟与山羊的生理结构,设计了一种四足仿生移动机器人。首先,根据海龟能在松软地面上爬行以及山羊运动能力强的特点,为机器人规划了仿海龟爬行和仿山羊行走两种步态以适应不同环境,提高了机器人的运动性能。然后,对机器人支腿进行了动力学分析,通过建立动力学模型来获取机器人关节扭矩与运动性能参数之间的定量关系。最后,通过仿真和样机实验来验证机器人步态的可行性以及机器人的环境适应能力。结果表明,所设计的机器人结构稳定,步态规划合理,可适应不同的复杂地形。研究结果可为仿生机器人的设计与开发提供重要参考。 展开更多
关键词 仿生移动机器人 多步态规划 动力学
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部