Bioprobe based on fluorescence is widely used in biological and medical research due to its high sensitivity and selectivity.Yet,its quantification in vivo is complicated and often compromised by the interaction betwe...Bioprobe based on fluorescence is widely used in biological and medical research due to its high sensitivity and selectivity.Yet,its quantification in vivo is complicated and often compromised by the interaction between the fluorophore with the environmental factors,as well as the optical scattering and absorption by the tissue.A high florescence quantum yield and minimal interference by the environment are key requirements for designing an effective bioprobe,and the prerequisitions severely limit the available options.We propose that a comprehensive evaluation of potential bioprobe can be achieved by simultaneously measuring both radiative and nonradiative transitions,the two fundamental and complementary pathways for the energy de-excitation.This approach will not only improve the accuracy of the quantification by catching the information from a broader spectrum of the energy,but also provide additional information of the probe environment that often impacts the balance between the two forms of the energy transition.This work first analyzes the underlying mechanism of the hypothesis.The practical feasibility is then tested by means of simultaneous measurements of photoacoustic signal for the non-radiative and fluorescence for the radiative energy processes,respectively.It is demonstrated that the systematic evaluation of the probe energy de-excitation results in an improved quantitative tracing of a bioprobe in complex environment.展开更多
Therapeutic nanoparticles are designed to enhance efficacy,real-time monitoring,targeting accuracy,biocompatibility,biodegradability,safety,and the synergy of diagnosis and treatment of diseases by leveraging the uniq...Therapeutic nanoparticles are designed to enhance efficacy,real-time monitoring,targeting accuracy,biocompatibility,biodegradability,safety,and the synergy of diagnosis and treatment of diseases by leveraging the unique physicochemical and biological properties of well-developed bio-nanomaterials.Recently,bio-inspired metal nanoclusters(NCs)consisting of several to roughly dozens of atoms(<2 nm)have attracted increasing research interest,owing to their ultrafine size,tunable fluorescent capability,good biocompatibility,variable metallic composition,and extensive surface bio-functionalization.Hybrid coreeshell nanostructures that effectively incorporate unique fluorescent inorganic moieties with various biomolecules,such as proteins(enzymes,antigens,and antibodies),DNA,and specific cells,create fluorescently visualized molecular nanoparticle.The resultant nanoparticles possess combinatorial properties and synergistic efficacy,such as simplicity,active bio-responsiveness,improved applicability,and low cost,for combination therapy,such as accurate targeting,bioimaging,and enhanced therapeutic and biocatalytic effects.In contrast to larger nanoparticles,bio-inspired metal NCs allow rapid renal clearance and better pharmacokinetics in biological systems.Notably,advances in nanoscience,interfacial chemistry,and biotechnologies have further spurred researchers to explore bio-inspired metal NCs for therapeutic purposes.The current review presents a comprehensive and timely overview of various metal NCs for various therapeutic applications,with a special emphasis on the design rationale behind the use of biomolecules/cells as the main scaffolds.In the different hybrid platform,we summarize the current challenges and emerging perspectives,which are expected to offer in-depth insight into the rational design of bio-inspired metal NCs for personalized treatment and clinical translation.展开更多
基金supported by the National Natural Science Foundation of China (62075066)Guangdong Basic and Applied Basic Research Foundation (2021A1515011285,2019A1515010800)+1 种基金Major Project under the Science and Technology Development Scheme of Guangdong Province (210715106900918,[2020]53-129)Shantou Science and Technology Plan Medical and Health Category Project (211114216492935).
文摘Bioprobe based on fluorescence is widely used in biological and medical research due to its high sensitivity and selectivity.Yet,its quantification in vivo is complicated and often compromised by the interaction between the fluorophore with the environmental factors,as well as the optical scattering and absorption by the tissue.A high florescence quantum yield and minimal interference by the environment are key requirements for designing an effective bioprobe,and the prerequisitions severely limit the available options.We propose that a comprehensive evaluation of potential bioprobe can be achieved by simultaneously measuring both radiative and nonradiative transitions,the two fundamental and complementary pathways for the energy de-excitation.This approach will not only improve the accuracy of the quantification by catching the information from a broader spectrum of the energy,but also provide additional information of the probe environment that often impacts the balance between the two forms of the energy transition.This work first analyzes the underlying mechanism of the hypothesis.The practical feasibility is then tested by means of simultaneous measurements of photoacoustic signal for the non-radiative and fluorescence for the radiative energy processes,respectively.It is demonstrated that the systematic evaluation of the probe energy de-excitation results in an improved quantitative tracing of a bioprobe in complex environment.
基金support from National Natural Science Foundation of China(Grant No.11802066)Science and Technology Innovation Committee of Shenzhen(JCYJ20170818091601315,China)support from the China Postdoctoral Science Foundation(2019M01294501)。
文摘Therapeutic nanoparticles are designed to enhance efficacy,real-time monitoring,targeting accuracy,biocompatibility,biodegradability,safety,and the synergy of diagnosis and treatment of diseases by leveraging the unique physicochemical and biological properties of well-developed bio-nanomaterials.Recently,bio-inspired metal nanoclusters(NCs)consisting of several to roughly dozens of atoms(<2 nm)have attracted increasing research interest,owing to their ultrafine size,tunable fluorescent capability,good biocompatibility,variable metallic composition,and extensive surface bio-functionalization.Hybrid coreeshell nanostructures that effectively incorporate unique fluorescent inorganic moieties with various biomolecules,such as proteins(enzymes,antigens,and antibodies),DNA,and specific cells,create fluorescently visualized molecular nanoparticle.The resultant nanoparticles possess combinatorial properties and synergistic efficacy,such as simplicity,active bio-responsiveness,improved applicability,and low cost,for combination therapy,such as accurate targeting,bioimaging,and enhanced therapeutic and biocatalytic effects.In contrast to larger nanoparticles,bio-inspired metal NCs allow rapid renal clearance and better pharmacokinetics in biological systems.Notably,advances in nanoscience,interfacial chemistry,and biotechnologies have further spurred researchers to explore bio-inspired metal NCs for therapeutic purposes.The current review presents a comprehensive and timely overview of various metal NCs for various therapeutic applications,with a special emphasis on the design rationale behind the use of biomolecules/cells as the main scaffolds.In the different hybrid platform,we summarize the current challenges and emerging perspectives,which are expected to offer in-depth insight into the rational design of bio-inspired metal NCs for personalized treatment and clinical translation.