Low-impact development (LID) technologies, such as bioretention areas, rooftop rainwater harvesting, a_nd xeris_caping can co_ntrol stormwater runoff, supply non-potable water, and landscape open space.TillS study e...Low-impact development (LID) technologies, such as bioretention areas, rooftop rainwater harvesting, a_nd xeris_caping can co_ntrol stormwater runoff, supply non-potable water, and landscape open space.TillS study examines a hybrid system (HS) that combines LID technologies with a centralized water system to lessen the burden on a conventional system (CS). CS is defined as the stormwater collection and water supply infrastructure, and the conventional landscaping choices in the City of Atlanta. The study scope is limited to five single-family residential zones (SFZs), classified R-1 through R-5, and four multi-family residential zones (MFZs), classified RG-2 through RG-5. Population density increases from 0.4 (R-1) to 62.2 (RG-5) persons per 1,000 m2. We performed a life cycle assessment (LCA) comparison of CS and HS using TRACI 2.1 to simulate impacts on the ecosystem, human health, and natural resources. We quantified the impact of freshwater consumption using the freshwater ecosystem impact (FEI) indicator. Test results indicate that HS has a higher LCA single score than CS in zones with a low population density; however, the difference becomes negligible as population density increases. Incorporating LID in SFZs and MFZs can reduce potable water use by an average of 50%. and 25%,respectively.; however, water savings are negligible in zones with high population density (i.e., RG-5) due to the diminished surface area per capitaavailable for LID technoogies. The results demonstrate that LID technologies effectively reduce outdoor water demand and therefore would be a good choice to decrease the water consumption impact in the City of Atlanta.展开更多
基金Acknowledgements This research was sponsored by the Brook Byers Institute for Sustainable Systems, Hightower Chair, and the Georgia Research Alliance at the Georgia Institute of Technology. This work was also supported by a grant for "Resilient Interdependent Infrastructure Processes and Systems (RIPS) Type 2: Participatory Modeling of Complex Urban Infrastructure Systems (Model Urban SysTems)," (#0836046) from National Science Foundation, Division of Emerging Frontiers in Research and Innovations (EFRI). The authors also acknowledge the support of Crittenden and Associates.
文摘Low-impact development (LID) technologies, such as bioretention areas, rooftop rainwater harvesting, a_nd xeris_caping can co_ntrol stormwater runoff, supply non-potable water, and landscape open space.TillS study examines a hybrid system (HS) that combines LID technologies with a centralized water system to lessen the burden on a conventional system (CS). CS is defined as the stormwater collection and water supply infrastructure, and the conventional landscaping choices in the City of Atlanta. The study scope is limited to five single-family residential zones (SFZs), classified R-1 through R-5, and four multi-family residential zones (MFZs), classified RG-2 through RG-5. Population density increases from 0.4 (R-1) to 62.2 (RG-5) persons per 1,000 m2. We performed a life cycle assessment (LCA) comparison of CS and HS using TRACI 2.1 to simulate impacts on the ecosystem, human health, and natural resources. We quantified the impact of freshwater consumption using the freshwater ecosystem impact (FEI) indicator. Test results indicate that HS has a higher LCA single score than CS in zones with a low population density; however, the difference becomes negligible as population density increases. Incorporating LID in SFZs and MFZs can reduce potable water use by an average of 50%. and 25%,respectively.; however, water savings are negligible in zones with high population density (i.e., RG-5) due to the diminished surface area per capitaavailable for LID technoogies. The results demonstrate that LID technologies effectively reduce outdoor water demand and therefore would be a good choice to decrease the water consumption impact in the City of Atlanta.