Vegetation roots contribute to soil fixation and reinforcement, thus improving soil resistance against erosion. Generally, the amount of soil fixation presented by roots mainly depends on root density and tensile stre...Vegetation roots contribute to soil fixation and reinforcement, thus improving soil resistance against erosion. Generally, the amount of soil fixation presented by roots mainly depends on root density and tensile strength. In the present study, we conducted the research in order to further understand the biotechnical properties of Haloxylon persicum and also to quantify its role in increasing soil cohesion in arid lands of Iran. Ten H. persicum shrubs were randomly selected for root distribution and strength investigations, in which five samples were set on flat terrain and other five samples on a moderate slope terrain. The profile trench method was used to assess the root area ratio(RAR) as the index of root density and distribution. Two profiles were dug around each sample, up and downslope for sloped treatment and north and south sides for flat treatment. The results showed that RAR increased with increasing soil depth and significantly decreased in 40–50 cm layers of downhill(0.320%) and 50–60 cm for uphill(0.210%). The minimum values for the northward and southward profiles were 0.003% and 0.003%, respectively, while the maximum values were 0.260% and 0.040%, respectively. The relationship between the diameter of root samples and root tensile strength followed a negative power function, but tensile force increased with increasing root diameter following a positive power function. The pattern of increased cohesion changes in soil profile was relatively similar to RAR curves. The maximum increased cohesion due to the presence of roots in uphill and downhill sides were 0.470 and 1.400 kPa, respectively. In the flat treatment, the maximum increased cohesions were 0.570 and 0.610 kPa in northward and southward profiles, respectively. The analysis of variance showed that wind and slope induced stresses did not have any significant effect on the amount of increased cohesion of H. persicum. The findings served to develop knowledge about biotechnical properties of H. persicum root system that can assist in assessing the efficiency of afforestation and restoration measures for erosion control in arid lands.展开更多
The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vege...The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vegetation and porous characteristics of the soil and rock mass, the steep slope will be destabilized and induce mud-rock flow or derive hazard easily. Firstly, based on the classical slope reinforcement theory, some regularity between the shear and displacement in the destabilized zone of the slope with or without root strength contribution is presented. Then, based on the experimental and statistical analysis of root strength, hydrological characteristics and stability status, etc., some possible biotechnical techniques for reinforcement of the steep slope have been suggested. These methods are important for quantitative analysis of destabilization of the slope and design of the biotechnical reinforcement.展开更多
文摘Vegetation roots contribute to soil fixation and reinforcement, thus improving soil resistance against erosion. Generally, the amount of soil fixation presented by roots mainly depends on root density and tensile strength. In the present study, we conducted the research in order to further understand the biotechnical properties of Haloxylon persicum and also to quantify its role in increasing soil cohesion in arid lands of Iran. Ten H. persicum shrubs were randomly selected for root distribution and strength investigations, in which five samples were set on flat terrain and other five samples on a moderate slope terrain. The profile trench method was used to assess the root area ratio(RAR) as the index of root density and distribution. Two profiles were dug around each sample, up and downslope for sloped treatment and north and south sides for flat treatment. The results showed that RAR increased with increasing soil depth and significantly decreased in 40–50 cm layers of downhill(0.320%) and 50–60 cm for uphill(0.210%). The minimum values for the northward and southward profiles were 0.003% and 0.003%, respectively, while the maximum values were 0.260% and 0.040%, respectively. The relationship between the diameter of root samples and root tensile strength followed a negative power function, but tensile force increased with increasing root diameter following a positive power function. The pattern of increased cohesion changes in soil profile was relatively similar to RAR curves. The maximum increased cohesion due to the presence of roots in uphill and downhill sides were 0.470 and 1.400 kPa, respectively. In the flat treatment, the maximum increased cohesions were 0.570 and 0.610 kPa in northward and southward profiles, respectively. The analysis of variance showed that wind and slope induced stresses did not have any significant effect on the amount of increased cohesion of H. persicum. The findings served to develop knowledge about biotechnical properties of H. persicum root system that can assist in assessing the efficiency of afforestation and restoration measures for erosion control in arid lands.
基金This work was financially supported by the National Natural Science Foundation of China (No. 10402033) and the Key Lab. Foun-dation of the Ministry of Education of China (No.04JS19).
文摘The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vegetation and porous characteristics of the soil and rock mass, the steep slope will be destabilized and induce mud-rock flow or derive hazard easily. Firstly, based on the classical slope reinforcement theory, some regularity between the shear and displacement in the destabilized zone of the slope with or without root strength contribution is presented. Then, based on the experimental and statistical analysis of root strength, hydrological characteristics and stability status, etc., some possible biotechnical techniques for reinforcement of the steep slope have been suggested. These methods are important for quantitative analysis of destabilization of the slope and design of the biotechnical reinforcement.