A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chem...A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chemical 5‐hydroxymethylfurfural (HMF) from hexoses. Some important reaction param‐eters were studied, revealing that Lewis and Br-nsted acid sites on SO42-/In2O3‐ATP catalyze glu‐cose isomerization and fructose dehydration. The yields of HMF from glucose and fructose were 40.2%and 46.2%, respectively, using the optimal conditions of 180℃ for 60 min with 10 wt%of solid acid catalyst in a mixture of γ‐valerolactone‐water (9:1).展开更多
With the aim of achieving a high 5-hydroxymethylfurfural(HMF)yield from glucose with H-ZSM-5 catalyst at low cost,three inexpensive biphasic reaction systems,H2O?tetrahydrofuran(THF),H2O?2-methyltetrahydrofuran(MeTHF)...With the aim of achieving a high 5-hydroxymethylfurfural(HMF)yield from glucose with H-ZSM-5 catalyst at low cost,three inexpensive biphasic reaction systems,H2O?tetrahydrofuran(THF),H2O?2-methyltetrahydrofuran(MeTHF)and H2O?2-butanol,were discovered and proved to be particularly effective in promoting the formation of HMF from glucose over H-ZSM-5 zeolite.In order to determine the optimal process conditions,the effects of various experimental variables,such as reaction temperature,reaction time,catalyst dosage,volume of organic solvent,as well as inorganic salt type on glucose conversion to HMF in three systems were investigated in detail.It was found that under optimal reaction conditions,H2O?THF,H2O?2-butanol and H2O?MeTHF allowed the glucose dehydration process to achieve HMF yields of up to 61%,59%,and 50%,respectively.Moreover,in the three biphasic systems,the H-ZSM-5 catalyst was also demonstrated to maintain excellent stability.Thus,the catalytic approach proposed in this paper can be believed to have potential prospects for industrially efficient and low-cost production of HMF.展开更多
Immobilization biocatalysis is a potential technology to improve the activity and stability of biocatalysts in nonaqueous systems for efficient industrial production.Alginate-chitosan(AC)microcapsules were prepared as...Immobilization biocatalysis is a potential technology to improve the activity and stability of biocatalysts in nonaqueous systems for efficient industrial production.Alginate-chitosan(AC)microcapsules were prepared as immobilization carriers by emulsifi cation-internal gelation and complexation reaction,and their contribution on facilitating the growth and metabolism of yeast cells were testifi ed successfully in culture medium-solvent biphasic systems.The cell growth in AC microcapsules is superior to that in alginate beads,and the cells in both immobilization carriers maintain much higher activity than free cells,which demonstrates AC microcapsules can confer yeast cells the ability to resist the adverse effect of solvent.Moreover,the performance of AC microcapsules in biphasic systems could be improved by adjusting the formation of outer polyelectrolyte complex(PEC)membrane to promote the cell growth and metabolic ability under the balance of resisting solvent toxicity and permitting substrate diffusion.Therefore,these findings are quite valuable for applying AC microcapsules as novel immobilization carriers to realize the biotransformation of value-added products in aqueous-solvent biphasic systems.展开更多
Efficient and selective production of 5-hydroxymethylfurfural(HMF) from glucose was achieved in the presence of zirconium phosphate(ZrPO) catalyst in a biphasic system.With the use of this catalyst,a high HMF yield of...Efficient and selective production of 5-hydroxymethylfurfural(HMF) from glucose was achieved in the presence of zirconium phosphate(ZrPO) catalyst in a biphasic system.With the use of this catalyst,a high HMF yield of 56.8% was obtained from glucose in a water-tetrahydrofuran(THF) biphasic system.Characterization results showed that such catalyst had weak to strong acid sites and contained both Lewis and Br?nsted acid sites.The results of comparative experiments over some other solid acid catalysts demonstrated that the Lewis acid sites on the ZrPO catalyst played a crucial role in the isomerization of glucose to fructose and the Br?nsted ones were active in the dehydration of generated fructose to HMF.Moreover,less levulinic acid(LA) and formic acid(FA)(0.5%) were detected in the reaction solution,indicating that this ZrPO catalyst exhibited high selectivity towards the formation of HMF.Furthermore,the ZrPO catalyst was very stable and could maintain its activity after being used for six times.展开更多
The recent advances in accelerated polymerization of N-carboxyanhydrides (NCAs) offer an effective strategy to simplify the preparation of polypeptide materials. However, the fine-tuning of polymerization kinetics, wh...The recent advances in accelerated polymerization of N-carboxyanhydrides (NCAs) offer an effective strategy to simplify the preparation of polypeptide materials. However, the fine-tuning of polymerization kinetics, which is critical to differentiate the main polymerization and the side reactions, remains largely unexplored. Herein we report the modulation of polymerization rate of NCA in a water/oil biphasic system. By altering the aqueous pH, the initial location of the initiators, and the pK_(a) of initiating amines, we observed the change in polymerization time from several minutes to a few hours. Due to the high interfacial activity and low pKa value, controlled polymerization was observed from multi-amine initiators even if they were initially located in the aqueous phase. This work not only improves our understanding on the biphasic polymerization mechanism, but also facilitates preparation of versatile polypeptide materials.展开更多
Biphasic layered oxide cathodes,known for their superior electrochemical performance,are prime candidates for commercializing in Na-ion batteries.Herein,we unveil a series of P3/P2 monophasic and biphasic Al-substitut...Biphasic layered oxide cathodes,known for their superior electrochemical performance,are prime candidates for commercializing in Na-ion batteries.Herein,we unveil a series of P3/P2 monophasic and biphasic Al-substituted Na_(3/4)Mn_(5-x/8)Al_(2x/8)Ni_(3-x/8)O_(2)layered oxide cathodes that lie along the‘zero Mn^(3+)line’in the Na_(3/4)(Mn-Al-Ni)O_(2)pseudo-ternary system.The structural analysis showed a larger Na^(+)conduction bottleneck area in both P3 and P2 structures with a higher Al3+content,which enhanced their rate performance.In each composition,the P3/P2 biphasic compound with nearly equal fractions of P3 and P2 phases outperformed their monophasic counterparts in almost all electrochemical performance parameters.Operando synchrotron XRD measurements obtained for the monophasic P3 and biphasic P2/P3 samples revealed the absence of the O3 phase during cycling.The high structure stability and faster Na^(+)transport kinetics in the biphasic samples underpins the enhancement of electrochemical properties in the Al-substituted P3/P2 cathodes.These results highlight fixed oxidation state lines as a novel tool to identify and design layered oxide cathodes for Na-ion batteries in pseudo-ternary diagrams involving Jahn-Teller active cations.展开更多
Asymmetric reduction of 3,5-bistrifluoromethyl acetophenone to produce(S)-3,5-bistrifluoromethylphenyl ethanol was successfully carried out with sodium alginate immobilized Saccharomyces rhodotorula cells in an aqueou...Asymmetric reduction of 3,5-bistrifluoromethyl acetophenone to produce(S)-3,5-bistrifluoromethylphenyl ethanol was successfully carried out with sodium alginate immobilized Saccharomyces rhodotorula cells in an aqueous-organic solvent biphasic system.The possible influential factors were examined thoroughly according to their effects on conversion rate and e.e of the product.Organic solvents were rated by their biocompatibility and conversion potential.The immobilized cells [125 mg/mL in 20 mmol/L Tris-HCl buffer and 5%(j) octane at pH 8] showed the best conversion with a substrate concentration of 1.42 g/L at 30℃ with glucose as co-substrate for cofactor regeneration.Sequential 8-batch process was carried out with immobilized cells with a slow decrease in conversion and e.e.The immobilized cells showed stable catalytic activity with 50% reserved activity and are superior especially in reusability in comparison with resting cells.展开更多
The treatment of anionic ^(99)TcO_(4)^(-)in the waste tank with high alkalinity is still very challenging.In this work,a new temperature-responsive alkaline aqueous biphasic system(ABS)based on(tri-n–butyl)-ntetradec...The treatment of anionic ^(99)TcO_(4)^(-)in the waste tank with high alkalinity is still very challenging.In this work,a new temperature-responsive alkaline aqueous biphasic system(ABS)based on(tri-n–butyl)-ntetradecyl phosphonium chloride(P_(44414)Cl)was developed to remove radioactive ^(99)TcO_(4)^(-).The phase transition mechanism was studied by cloud point titration,small-angel X-ray scattering,dynamic light scattering,and molecular dynamic simulations.As the Na OH concentration or temperature increased,the P_(44414)^(+)micelle could grow and aggregate.This micelle showed a particularly high affinity toward ReO_(4)^(-)/^(99)TcO_(4)^(-)compared to other competing anions and could directly extract more than 98.6%of ^(99)TcO_(4)^(-)from simulated radioactive tank waste supernatant.Furthermore,the loaded ^(99)TcO_(4)^(-)could be easily stripped by using concentrated nitric acid rather than metal salt-based reductants.This work clearly demonstrates that the alkaline ABS is a promising separation system for solving the technetium problem in the alkaline waste tank.展开更多
(R)-2-hydroxy-3-phenylpropionic acid (PIP,) is an ideal antimicrobial compound with broad-spectrum activity against a wide range of Gram-positive bacteria, some Gram-negative bacteria, and fungi. We studied the bi...(R)-2-hydroxy-3-phenylpropionic acid (PIP,) is an ideal antimicrobial compound with broad-spectrum activity against a wide range of Gram-positive bacteria, some Gram-negative bacteria, and fungi. We studied the bioconversion of phenylpyruvate (PPA) to PLA using whole recombinant Escherichia coli cells in a series of buffer/organic solvent systems. Octane was found to be the best organic solvent. The optimum volume ratio of the water phase to the n-octane phase, conversion temperature, substrate concentration, and cell concentration were 6:4, 40 ℃, 12.5 g/L, and 30 g/L wet cells, respectively. Under the optimized conditions, the average PLA productivity in the aqueous/ n-octane system was 30.69% higher than that in the aqueous system, and 32.31 g/L PLA was obtained with the use of a stirred reactor (2-L scale). Taken together, our findings indicated that PLA biosynthesis was more efficient in an aqueous/n-octane biphasic system than in a monophasic aqueous system. The proposed biphasic system is an effective strategy for enhancing PLA yield and the biosynthesis of its analogues.展开更多
Recovering critical metals from secondary resources have attracted great interest recently.In this work,a green one-pot leaching-extraction process based on tributyl(tetradecyl)phosphonium chloride (P_(44414)Cl)aqueou...Recovering critical metals from secondary resources have attracted great interest recently.In this work,a green one-pot leaching-extraction process based on tributyl(tetradecyl)phosphonium chloride (P_(44414)Cl)aqueous biphasic system (ABS) was developed to efficiently recover rare earth elements (REEs) from Nd Fe B permanent magnet.The reaction process,phase separation mechanism,and operation conditions were thoroughly investigated.It is found that the P_(44414)Cl-HCl ABS showed strong extraction ability towards Fe (>99%) whereas only a few REEs (<10%) were extracted,leading to extremely high separation selectivity between Fe and REEs.The characterization results showed that the coordination differences of Fe and Nd in HCl were the main driving forces for such highly selective separation.The phase diagram of P_(44414)Cl-Nd Cl_(3)ABS indicated that the salting-out effect of Nd Cl_(3)was stronger than common chlorides.Due to the hydrophobic property of P_(44414)[Fe Cl_(4)]and salting-out effect of Nd Cl_(3),the P_(44414)Cl could directly form ABS at room temperature after dissolving practical roasted Nd Fe B samples without any other operations and reagents.REEs and Fe could be mutually separated in just one step.Compared with traditional liquid-liquid extraction or ABS separation,this recovery process is green and facile and shows great application prospects in the field of rare-earth recovery.展开更多
Aqueous biphasic systems(ABS)are promising for proteins purification;however,when dealing with samples comprising several proteins,the selectivity towards a target protein is difficult to achieve.In this work,the addi...Aqueous biphasic systems(ABS)are promising for proteins purification;however,when dealing with samples comprising several proteins,the selectivity towards a target protein is difficult to achieve.In this work,the addition of ionic liquids(ILs)as adjuvants(5 wt%and 10 wt%)in ABS composed of polyethylene glycol(PEG)and dextran was investigated to tailor proteins partitioning between the coexisting phases.The liquid-liquid phase diagrams were determined at 298 K,followed by partition studies of three proteins(bovine serum albumin(BSA),immunoglobulin G(IgG),and cytochrome C(Cyt C)).Partition coefficients of IgG and BSA indicate the preference of both proteins to the dextran-rich phase,whereas Cyt C has no preferential partitioning between the phases.The addition of chloride-based ILs as adjuvants allows to increase or decrease the partition coefficients,thus tailoring the proteins partitioning between the phases.BSA partitioning essentially depends on the IL content in each phase,whereas Cyt C and IgG partitioning is ruled by the ILs chemical structure and established interactions.Molecular docking was carried out to address the ILs effect on the proteins partitioning,supporting experimental observations,while identifying the specific interactions occurring.The partition of each protein in polymer-salt ABS with ILs as adjuvants was determined,demonstrating the higher tailoring ability of polymer-polymer ABS when adding ILs.Finally,the partition of each protein in presence of the remaining ones was determined,as well as the selectivity of the studied systems to separate each pair of proteins,paving the way for their use in liquidliquid chromatography.展开更多
Phosphoric acid treated niobic acid(NbP)was used for the dehydration of xylose to furfural in biphasic solvent system,which was found to exhibit the best performance among the tested catalysts.The excellent performanc...Phosphoric acid treated niobic acid(NbP)was used for the dehydration of xylose to furfural in biphasic solvent system,which was found to exhibit the best performance among the tested catalysts.The excellent performance of NbP could be explained by the better synergistic cooperation between Bro¨nsted and Lewis acid sites.Moreover,NbP showed good stability and no obvious deactivation or leaching of Nb could be observed after six continuous recycles.展开更多
A facile and efficient protocol for the synthesis of 3,4-dihydropyrimidones via one-pot Biginelli reaction in PEG1000-DAIL/toluene system was developed. PEG1000-DAIL/toluene mixture is a temperature-driven reversible ...A facile and efficient protocol for the synthesis of 3,4-dihydropyrimidones via one-pot Biginelli reaction in PEG1000-DAIL/toluene system was developed. PEG1000-DAIL/toluene mixture is a temperature-driven reversible b/phasic system, which promises the fully display of catalytic activity and simple recycle of PEGI0oo-DAIL. As a re- suit, PEG1000-DAIL/toluene mixture showed catalyst-medium double-duty in the Biginelli reaction and afforded cor- responding 3,4-dihydropyrimidones in excellent yields of activity was observed even after 10 recycling, runs. 80%---95% for 20 examples. No obvious loss of catalytic展开更多
Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome,e.g., interface instability and dendrite growth. In this work, nano silica aero...Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome,e.g., interface instability and dendrite growth. In this work, nano silica aerogel was employed to generate a hybrid film with high lithium ion conductivity(0.6 mS cm^(-1)at room temperature) via an in situ crosslinking reaction. TOF-SIMS profile analysis has revealed conversion mechanism of hybrid film to Li–Si alloy/Li F biphasic interface layer, suggesting that the Li–Si alloy and Li F-rich interface layer promoted rapid Li+transport and shielded the Li anodes from corrosive reactions with electrolyte-derived products. When coupled with nickel-cobalt-manganese-based cathodes, the batteries achieve outstanding capacity retention over 1000 cycles at 1 C. Additionally the developed film coated on Li enabled high coulombic efficiency(99.5%) after long-term cycling when coupled with S cathodes. Overall, the results presented herein confirm an effective strategy for the development of high-energy batteries.展开更多
Thermoregulated organic biphasic system composed of triethylene glycol monomethyl ether (TGME) and n-heptane was first applied to the hydrogenation of 1-octene. Under the optimal conditions: P(H2)=5.0MPa, T=80℃,...Thermoregulated organic biphasic system composed of triethylene glycol monomethyl ether (TGME) and n-heptane was first applied to the hydrogenation of 1-octene. Under the optimal conditions: P(H2)=5.0MPa, T=80℃, t=3h, 1-octene/Ru=1000 (molar ratio), the yield of n-octane reached up to 99.6%. Furthermore, the simply decanted catalyst could be reused for 10 times without apparent loss of catalytic activity.展开更多
The proteins coming from the milk whey have numerous functional properties. Among the proteins with high bioactivity, α-lactoalbumin (α-La) and β-lactoglobulin (β-Lg) are present in large quantities in the milk wh...The proteins coming from the milk whey have numerous functional properties. Among the proteins with high bioactivity, α-lactoalbumin (α-La) and β-lactoglobulin (β-Lg) are present in large quantities in the milk whey. In the separation process of proteins, it is important to choose techniques which besides ensuring purity and high yield will not affect the molecule biological activity. The aqueous two-phase systems (ATS) have been utilized with success in the partition of these proteins, however, the studies were performed using protein in its pure form. Studies using milk whey in-nature and goat milk whey have not been found yet. In this context, the objective of this study was to evaluate the liquid liquid equilibrium of aqueous two-phase systems (ATS) in the partition of α-La and β-Lg from goat milk whey in-nature. Equilibrium data were performed considering ATS comprised of polyethylene glycol, potassium phosphate and water at 25°C and pH 7.0. The influence of the polymer molecular weight and amount of goat milk whey in-nature on the partition coefficient of these proteins were assessed. The partition coefficient, selectivity, process yield and purity of α-lactoalbumin and β-lactoglobulin proteins were determined. The results showed that the separation technique by aqueous biphasic systems is applicable indicating high efficiency in the whey proteins separation process.展开更多
Post-combustion CO_2 capture(PCC) process faces significant challenge of high regeneration energy consumption.Biphasic absorbent is a promising alternative candidate which could significantly reduce the regeneration e...Post-combustion CO_2 capture(PCC) process faces significant challenge of high regeneration energy consumption.Biphasic absorbent is a promising alternative candidate which could significantly reduce the regeneration energy consumption because only the CO_2-concentrated phase should be regenerated. In this work, aqueous solutions of triethylenetetramine(TETA) and N,N-diethylethanolamine(DEEA) are found to be efficient biphasic absorbents of CO_2. The effects of the solvent composition, total amine concentration, and temperature on the absorption behavior, as well as the effect of temperature on the desorption behavior of TETA–DEEA–H2 O system were investigated. An aqueous solution of 1 mol·L-1 TETA and 4 mol·L-1 DEEA spontaneously separates into two liquid phases after a certain amount of CO_2 is absorbed and it shows high CO_2 absorption/desorption performance.About 99.4% of the absorbed CO_2 is found in the lower phase, which corresponds to a CO_2 absorption capacity of 3.44 mol·kg-1. The appropriate absorption and desorption temperatures are found to be 30 °C and 90 °C,respectively. The thermal analysis indicates that the heat of absorption of the 1 mol·L-1 TETA and 4 mol·L-1 DEEA solution is-84.38 kJ·(mol CO_2)-1 which is 6.92 kJ·(mol CO_2)-1 less than that of aqueous MEA. The reaction heat, sensible heat, and the vaporization heat of the TETA–DEEA–H2 O system are lower than that of the aqueous MEA, while its CO_2 capacity is higher. Thus the TETA–DEEA–H2 O system is potentially a better absorbent for the post-combustion CO_2 capture process.展开更多
Esterification of carboxylic acid with equimolar amounts alcohol can be efficiently catalyzed by biphasic 4-(benzylamino)formoyldiphenylammonium triflate (BDPAT, 3) in good yield. The catalyst can be easily recovered...Esterification of carboxylic acid with equimolar amounts alcohol can be efficiently catalyzed by biphasic 4-(benzylamino)formoyldiphenylammonium triflate (BDPAT, 3) in good yield. The catalyst can be easily recovered without loss of activity.展开更多
Microalgae,a sustainable source of multi beneficial components has been discovered and could be utilised in pharmaceutical,bioenergy and food applications.This study aims to investigate the sugaring-out effect on the ...Microalgae,a sustainable source of multi beneficial components has been discovered and could be utilised in pharmaceutical,bioenergy and food applications.This study aims to investigate the sugaring-out effect on the recovery of protein from wet green microalga,Chlorella sorokiniana CY1 which was assisted with sonication.A comparison of monosaccharides and disaccharides as one of the phaseforming constituents shows that the monosaccharides,glucose was the most suitable sugar in forming the phases with acetonitrile to enhance the production of protein(52% of protein).The protein productivity of microalgae was found to be significantly influenced by the volume ratio of both phases,as the yield of protein increased to 77%.The interval time between the sonication as well as the sonication modes were influencing the protein productivity as well.The optimum protein productivity was obtained with 10s of resting time in between sonication.Pulse mode of sonication was suitable to break down the cell wall of microalgae compared to continuous mode as a lower protein yield was obtained with the application of continuous mode.The optimum condition for protein extraction were found as followed:200g/L glucose as bottom phase with volume ratio of 1:1.25,10s of resting time for ultrasonication,5s of ultrasonication in pulse mode and 0.25g of biomass weight.The high yield of protein about 81% could be obtained from microalgae which demonstrates the potential of this source and expected to play an important role in the future.展开更多
Ketalization of catechol was studied with various carbonyl compounds using metal p-toluenesulfonate as biphasic catalysts. The results showed that copper p-toluenesulfonate was the most efficient catalysts for the rea...Ketalization of catechol was studied with various carbonyl compounds using metal p-toluenesulfonate as biphasic catalysts. The results showed that copper p-toluenesulfonate was the most efficient catalysts for the reaction. The advantages of high activity, stability, reusability and low cost for the simple synthetic procedure made the catalyst one of the best choice for the reaction.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (TD2011-11,BLYJ201519)Beijing Higher Education Young Elite Teacher Project (YETP0765)+2 种基金National Natural Science Foundation of China (31170556)New Century Excellent Talents in University (NCET-13-0671)State Forestry Administration of China (201204803)~~
文摘A natural attapulgite (ATP)‐based catalyst, sulfated In2O3‐ATP (SO42-/In2O3‐ATP), was obtained by an impregnation‐calcination method and was used to efficiently and selectively produce the useful platform chemical 5‐hydroxymethylfurfural (HMF) from hexoses. Some important reaction param‐eters were studied, revealing that Lewis and Br-nsted acid sites on SO42-/In2O3‐ATP catalyze glu‐cose isomerization and fructose dehydration. The yields of HMF from glucose and fructose were 40.2%and 46.2%, respectively, using the optimal conditions of 180℃ for 60 min with 10 wt%of solid acid catalyst in a mixture of γ‐valerolactone‐water (9:1).
基金Project(3207049713)supported by the Scientific Research Foundation of Graduate School of Southeast University,China
文摘With the aim of achieving a high 5-hydroxymethylfurfural(HMF)yield from glucose with H-ZSM-5 catalyst at low cost,three inexpensive biphasic reaction systems,H2O?tetrahydrofuran(THF),H2O?2-methyltetrahydrofuran(MeTHF)and H2O?2-butanol,were discovered and proved to be particularly effective in promoting the formation of HMF from glucose over H-ZSM-5 zeolite.In order to determine the optimal process conditions,the effects of various experimental variables,such as reaction temperature,reaction time,catalyst dosage,volume of organic solvent,as well as inorganic salt type on glucose conversion to HMF in three systems were investigated in detail.It was found that under optimal reaction conditions,H2O?THF,H2O?2-butanol and H2O?MeTHF allowed the glucose dehydration process to achieve HMF yields of up to 61%,59%,and 50%,respectively.Moreover,in the three biphasic systems,the H-ZSM-5 catalyst was also demonstrated to maintain excellent stability.Thus,the catalytic approach proposed in this paper can be believed to have potential prospects for industrially efficient and low-cost production of HMF.
基金Supported by the National Natural Science Foundation of China(No.21276033)the Open Foundation of the State Key Laboratory of Bioactive Seaweed Substances(Nos.SKL-BASS1707,SKL-BASS1711)the Liaoning Provincial BaiQianWan Talents Program(No.2017-6)
文摘Immobilization biocatalysis is a potential technology to improve the activity and stability of biocatalysts in nonaqueous systems for efficient industrial production.Alginate-chitosan(AC)microcapsules were prepared as immobilization carriers by emulsifi cation-internal gelation and complexation reaction,and their contribution on facilitating the growth and metabolism of yeast cells were testifi ed successfully in culture medium-solvent biphasic systems.The cell growth in AC microcapsules is superior to that in alginate beads,and the cells in both immobilization carriers maintain much higher activity than free cells,which demonstrates AC microcapsules can confer yeast cells the ability to resist the adverse effect of solvent.Moreover,the performance of AC microcapsules in biphasic systems could be improved by adjusting the formation of outer polyelectrolyte complex(PEC)membrane to promote the cell growth and metabolic ability under the balance of resisting solvent toxicity and permitting substrate diffusion.Therefore,these findings are quite valuable for applying AC microcapsules as novel immobilization carriers to realize the biotransformation of value-added products in aqueous-solvent biphasic systems.
基金supported financially by the National Science Foundation of China(No.21273071)the Science and Technology Commission of Shanghai Municipality(13520711400,13JC1401902,10dz2220500)the Fundamental Research Funds for the Central Universities of China and the SINOPEC project(No.115046)
文摘Efficient and selective production of 5-hydroxymethylfurfural(HMF) from glucose was achieved in the presence of zirconium phosphate(ZrPO) catalyst in a biphasic system.With the use of this catalyst,a high HMF yield of 56.8% was obtained from glucose in a water-tetrahydrofuran(THF) biphasic system.Characterization results showed that such catalyst had weak to strong acid sites and contained both Lewis and Br?nsted acid sites.The results of comparative experiments over some other solid acid catalysts demonstrated that the Lewis acid sites on the ZrPO catalyst played a crucial role in the isomerization of glucose to fructose and the Br?nsted ones were active in the dehydration of generated fructose to HMF.Moreover,less levulinic acid(LA) and formic acid(FA)(0.5%) were detected in the reaction solution,indicating that this ZrPO catalyst exhibited high selectivity towards the formation of HMF.Furthermore,the ZrPO catalyst was very stable and could maintain its activity after being used for six times.
基金the National Natural Science Foundation of China(No.22101194 for Z.Song and No.52233015 for J.Cheng)Natural Science Foundation of Jiangsu Province(No.BK20210733 for Z.Song)+1 种基金Suzhou Municipal Science and Technology Bureau(No.ZXL2021447 for Z.Song)Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project.,Joint International Research Laboratory of Carbon-Based Functional Materials and Devices,and Suzhou Key Laboratory of Nanotechnology and Biomedicine.
文摘The recent advances in accelerated polymerization of N-carboxyanhydrides (NCAs) offer an effective strategy to simplify the preparation of polypeptide materials. However, the fine-tuning of polymerization kinetics, which is critical to differentiate the main polymerization and the side reactions, remains largely unexplored. Herein we report the modulation of polymerization rate of NCA in a water/oil biphasic system. By altering the aqueous pH, the initial location of the initiators, and the pK_(a) of initiating amines, we observed the change in polymerization time from several minutes to a few hours. Due to the high interfacial activity and low pKa value, controlled polymerization was observed from multi-amine initiators even if they were initially located in the aqueous phase. This work not only improves our understanding on the biphasic polymerization mechanism, but also facilitates preparation of versatile polypeptide materials.
基金the Science and Engineering Research Board(SERB),Govt.of India,for the financial support(grant number:CRG/2021/005548).
文摘Biphasic layered oxide cathodes,known for their superior electrochemical performance,are prime candidates for commercializing in Na-ion batteries.Herein,we unveil a series of P3/P2 monophasic and biphasic Al-substituted Na_(3/4)Mn_(5-x/8)Al_(2x/8)Ni_(3-x/8)O_(2)layered oxide cathodes that lie along the‘zero Mn^(3+)line’in the Na_(3/4)(Mn-Al-Ni)O_(2)pseudo-ternary system.The structural analysis showed a larger Na^(+)conduction bottleneck area in both P3 and P2 structures with a higher Al3+content,which enhanced their rate performance.In each composition,the P3/P2 biphasic compound with nearly equal fractions of P3 and P2 phases outperformed their monophasic counterparts in almost all electrochemical performance parameters.Operando synchrotron XRD measurements obtained for the monophasic P3 and biphasic P2/P3 samples revealed the absence of the O3 phase during cycling.The high structure stability and faster Na^(+)transport kinetics in the biphasic samples underpins the enhancement of electrochemical properties in the Al-substituted P3/P2 cathodes.These results highlight fixed oxidation state lines as a novel tool to identify and design layered oxide cathodes for Na-ion batteries in pseudo-ternary diagrams involving Jahn-Teller active cations.
文摘Asymmetric reduction of 3,5-bistrifluoromethyl acetophenone to produce(S)-3,5-bistrifluoromethylphenyl ethanol was successfully carried out with sodium alginate immobilized Saccharomyces rhodotorula cells in an aqueous-organic solvent biphasic system.The possible influential factors were examined thoroughly according to their effects on conversion rate and e.e of the product.Organic solvents were rated by their biocompatibility and conversion potential.The immobilized cells [125 mg/mL in 20 mmol/L Tris-HCl buffer and 5%(j) octane at pH 8] showed the best conversion with a substrate concentration of 1.42 g/L at 30℃ with glucose as co-substrate for cofactor regeneration.Sequential 8-batch process was carried out with immobilized cells with a slow decrease in conversion and e.e.The immobilized cells showed stable catalytic activity with 50% reserved activity and are superior especially in reusability in comparison with resting cells.
基金supported by the National Natural Science Foundation of China(Nos.21876124,U2032106)Natural Science Foundation of Zhejiang Province(Nos.LR21B060001 and LQ21B070004)。
文摘The treatment of anionic ^(99)TcO_(4)^(-)in the waste tank with high alkalinity is still very challenging.In this work,a new temperature-responsive alkaline aqueous biphasic system(ABS)based on(tri-n–butyl)-ntetradecyl phosphonium chloride(P_(44414)Cl)was developed to remove radioactive ^(99)TcO_(4)^(-).The phase transition mechanism was studied by cloud point titration,small-angel X-ray scattering,dynamic light scattering,and molecular dynamic simulations.As the Na OH concentration or temperature increased,the P_(44414)^(+)micelle could grow and aggregate.This micelle showed a particularly high affinity toward ReO_(4)^(-)/^(99)TcO_(4)^(-)compared to other competing anions and could directly extract more than 98.6%of ^(99)TcO_(4)^(-)from simulated radioactive tank waste supernatant.Furthermore,the loaded ^(99)TcO_(4)^(-)could be easily stripped by using concentrated nitric acid rather than metal salt-based reductants.This work clearly demonstrates that the alkaline ABS is a promising separation system for solving the technetium problem in the alkaline waste tank.
基金Project supported by the National Natural Science Foundation of China(Nos.31470092 and 31501459)the Natural Science Youth Foundation of Jiangsu Province(No.BK20130380)China
文摘(R)-2-hydroxy-3-phenylpropionic acid (PIP,) is an ideal antimicrobial compound with broad-spectrum activity against a wide range of Gram-positive bacteria, some Gram-negative bacteria, and fungi. We studied the bioconversion of phenylpyruvate (PPA) to PLA using whole recombinant Escherichia coli cells in a series of buffer/organic solvent systems. Octane was found to be the best organic solvent. The optimum volume ratio of the water phase to the n-octane phase, conversion temperature, substrate concentration, and cell concentration were 6:4, 40 ℃, 12.5 g/L, and 30 g/L wet cells, respectively. Under the optimized conditions, the average PLA productivity in the aqueous/ n-octane system was 30.69% higher than that in the aqueous system, and 32.31 g/L PLA was obtained with the use of a stirred reactor (2-L scale). Taken together, our findings indicated that PLA biosynthesis was more efficient in an aqueous/n-octane biphasic system than in a monophasic aqueous system. The proposed biphasic system is an effective strategy for enhancing PLA yield and the biosynthesis of its analogues.
基金supported by the National Natural Science Foundation of China (No.U2067213)Natural Science Foundation of Zhejiang Province (No.LR21B060001)the Fundamental Research Funds for the Central Universities (No.2021QNA4029)。
文摘Recovering critical metals from secondary resources have attracted great interest recently.In this work,a green one-pot leaching-extraction process based on tributyl(tetradecyl)phosphonium chloride (P_(44414)Cl)aqueous biphasic system (ABS) was developed to efficiently recover rare earth elements (REEs) from Nd Fe B permanent magnet.The reaction process,phase separation mechanism,and operation conditions were thoroughly investigated.It is found that the P_(44414)Cl-HCl ABS showed strong extraction ability towards Fe (>99%) whereas only a few REEs (<10%) were extracted,leading to extremely high separation selectivity between Fe and REEs.The characterization results showed that the coordination differences of Fe and Nd in HCl were the main driving forces for such highly selective separation.The phase diagram of P_(44414)Cl-Nd Cl_(3)ABS indicated that the salting-out effect of Nd Cl_(3)was stronger than common chlorides.Due to the hydrophobic property of P_(44414)[Fe Cl_(4)]and salting-out effect of Nd Cl_(3),the P_(44414)Cl could directly form ABS at room temperature after dissolving practical roasted Nd Fe B samples without any other operations and reagents.REEs and Fe could be mutually separated in just one step.Compared with traditional liquid-liquid extraction or ABS separation,this recovery process is green and facile and shows great application prospects in the field of rare-earth recovery.
基金funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreementsupported by POCI-01-0145-FEDER-031268 funded by FEDER,through COMPETE2020-Programa Operacional Competitividadee Internacionalizaçao(POCI)by national funds(OE),through FCT/MCTES.Ana P.M.Tavares acknowledges FCT for the research contract CEECIND/2020/01867.Flavia Magalhaes acknowledges the SPQ/FCT PhD grant(SFRH/BD/150669/2020).
文摘Aqueous biphasic systems(ABS)are promising for proteins purification;however,when dealing with samples comprising several proteins,the selectivity towards a target protein is difficult to achieve.In this work,the addition of ionic liquids(ILs)as adjuvants(5 wt%and 10 wt%)in ABS composed of polyethylene glycol(PEG)and dextran was investigated to tailor proteins partitioning between the coexisting phases.The liquid-liquid phase diagrams were determined at 298 K,followed by partition studies of three proteins(bovine serum albumin(BSA),immunoglobulin G(IgG),and cytochrome C(Cyt C)).Partition coefficients of IgG and BSA indicate the preference of both proteins to the dextran-rich phase,whereas Cyt C has no preferential partitioning between the phases.The addition of chloride-based ILs as adjuvants allows to increase or decrease the partition coefficients,thus tailoring the proteins partitioning between the phases.BSA partitioning essentially depends on the IL content in each phase,whereas Cyt C and IgG partitioning is ruled by the ILs chemical structure and established interactions.Molecular docking was carried out to address the ILs effect on the proteins partitioning,supporting experimental observations,while identifying the specific interactions occurring.The partition of each protein in polymer-salt ABS with ILs as adjuvants was determined,demonstrating the higher tailoring ability of polymer-polymer ABS when adding ILs.Finally,the partition of each protein in presence of the remaining ones was determined,as well as the selectivity of the studied systems to separate each pair of proteins,paving the way for their use in liquidliquid chromatography.
基金supported by the Natural Science Foundation of China (No.21106143)100-talent project of Dalian Institute of Chemical Physics (DICP)the Independent Innovation Foundation of State Key Laboratory of Catalysis (No.R201113)
文摘Phosphoric acid treated niobic acid(NbP)was used for the dehydration of xylose to furfural in biphasic solvent system,which was found to exhibit the best performance among the tested catalysts.The excellent performance of NbP could be explained by the better synergistic cooperation between Bro¨nsted and Lewis acid sites.Moreover,NbP showed good stability and no obvious deactivation or leaching of Nb could be observed after six continuous recycles.
基金Supported by the National Natural Science Foundation of China(No.21002050).
文摘A facile and efficient protocol for the synthesis of 3,4-dihydropyrimidones via one-pot Biginelli reaction in PEG1000-DAIL/toluene system was developed. PEG1000-DAIL/toluene mixture is a temperature-driven reversible b/phasic system, which promises the fully display of catalytic activity and simple recycle of PEGI0oo-DAIL. As a re- suit, PEG1000-DAIL/toluene mixture showed catalyst-medium double-duty in the Biginelli reaction and afforded cor- responding 3,4-dihydropyrimidones in excellent yields of activity was observed even after 10 recycling, runs. 80%---95% for 20 examples. No obvious loss of catalytic
基金the support from National Natural Science Foundation of China (22179006)International Science & Technology Cooperation Program of China under Contract No.2019YFE0100200+3 种基金National Natural Science Foundation of China (52072036)NSAF (No.U1930113)Guangdong Key Laboratory of Battery Safety,China (No.2019B121203008)China Postdoctoral Science Foundation (No.2021TQ0034)。
文摘Lithium metal batteries represent promising candidates for high-energy-density batteries, however, many challenges must still be overcome,e.g., interface instability and dendrite growth. In this work, nano silica aerogel was employed to generate a hybrid film with high lithium ion conductivity(0.6 mS cm^(-1)at room temperature) via an in situ crosslinking reaction. TOF-SIMS profile analysis has revealed conversion mechanism of hybrid film to Li–Si alloy/Li F biphasic interface layer, suggesting that the Li–Si alloy and Li F-rich interface layer promoted rapid Li+transport and shielded the Li anodes from corrosive reactions with electrolyte-derived products. When coupled with nickel-cobalt-manganese-based cathodes, the batteries achieve outstanding capacity retention over 1000 cycles at 1 C. Additionally the developed film coated on Li enabled high coulombic efficiency(99.5%) after long-term cycling when coupled with S cathodes. Overall, the results presented herein confirm an effective strategy for the development of high-energy batteries.
基金the financial support from the National Natural Science Foundation of China (Grant no. 20376013) the Fok Ying Tung Education Foundation (Grant no. 91071) the Doctorate Program Foundation of Higher Education (Grant no. 20020141004).
文摘Thermoregulated organic biphasic system composed of triethylene glycol monomethyl ether (TGME) and n-heptane was first applied to the hydrogenation of 1-octene. Under the optimal conditions: P(H2)=5.0MPa, T=80℃, t=3h, 1-octene/Ru=1000 (molar ratio), the yield of n-octane reached up to 99.6%. Furthermore, the simply decanted catalyst could be reused for 10 times without apparent loss of catalytic activity.
文摘The proteins coming from the milk whey have numerous functional properties. Among the proteins with high bioactivity, α-lactoalbumin (α-La) and β-lactoglobulin (β-Lg) are present in large quantities in the milk whey. In the separation process of proteins, it is important to choose techniques which besides ensuring purity and high yield will not affect the molecule biological activity. The aqueous two-phase systems (ATS) have been utilized with success in the partition of these proteins, however, the studies were performed using protein in its pure form. Studies using milk whey in-nature and goat milk whey have not been found yet. In this context, the objective of this study was to evaluate the liquid liquid equilibrium of aqueous two-phase systems (ATS) in the partition of α-La and β-Lg from goat milk whey in-nature. Equilibrium data were performed considering ATS comprised of polyethylene glycol, potassium phosphate and water at 25°C and pH 7.0. The influence of the polymer molecular weight and amount of goat milk whey in-nature on the partition coefficient of these proteins were assessed. The partition coefficient, selectivity, process yield and purity of α-lactoalbumin and β-lactoglobulin proteins were determined. The results showed that the separation technique by aqueous biphasic systems is applicable indicating high efficiency in the whey proteins separation process.
基金Supported by the National Natural Science Foundation of China(21606154)
文摘Post-combustion CO_2 capture(PCC) process faces significant challenge of high regeneration energy consumption.Biphasic absorbent is a promising alternative candidate which could significantly reduce the regeneration energy consumption because only the CO_2-concentrated phase should be regenerated. In this work, aqueous solutions of triethylenetetramine(TETA) and N,N-diethylethanolamine(DEEA) are found to be efficient biphasic absorbents of CO_2. The effects of the solvent composition, total amine concentration, and temperature on the absorption behavior, as well as the effect of temperature on the desorption behavior of TETA–DEEA–H2 O system were investigated. An aqueous solution of 1 mol·L-1 TETA and 4 mol·L-1 DEEA spontaneously separates into two liquid phases after a certain amount of CO_2 is absorbed and it shows high CO_2 absorption/desorption performance.About 99.4% of the absorbed CO_2 is found in the lower phase, which corresponds to a CO_2 absorption capacity of 3.44 mol·kg-1. The appropriate absorption and desorption temperatures are found to be 30 °C and 90 °C,respectively. The thermal analysis indicates that the heat of absorption of the 1 mol·L-1 TETA and 4 mol·L-1 DEEA solution is-84.38 kJ·(mol CO_2)-1 which is 6.92 kJ·(mol CO_2)-1 less than that of aqueous MEA. The reaction heat, sensible heat, and the vaporization heat of the TETA–DEEA–H2 O system are lower than that of the aqueous MEA, while its CO_2 capacity is higher. Thus the TETA–DEEA–H2 O system is potentially a better absorbent for the post-combustion CO_2 capture process.
文摘Esterification of carboxylic acid with equimolar amounts alcohol can be efficiently catalyzed by biphasic 4-(benzylamino)formoyldiphenylammonium triflate (BDPAT, 3) in good yield. The catalyst can be easily recovered without loss of activity.
基金Supported by the University of Malaya,Kuala Lumpur,Malaysia under SATU joint research scheme(No.ST004-2017)the International Cooperation Seeds Funding of Nanjing Agricultural University(No.2018-AH-04)
文摘Microalgae,a sustainable source of multi beneficial components has been discovered and could be utilised in pharmaceutical,bioenergy and food applications.This study aims to investigate the sugaring-out effect on the recovery of protein from wet green microalga,Chlorella sorokiniana CY1 which was assisted with sonication.A comparison of monosaccharides and disaccharides as one of the phaseforming constituents shows that the monosaccharides,glucose was the most suitable sugar in forming the phases with acetonitrile to enhance the production of protein(52% of protein).The protein productivity of microalgae was found to be significantly influenced by the volume ratio of both phases,as the yield of protein increased to 77%.The interval time between the sonication as well as the sonication modes were influencing the protein productivity as well.The optimum protein productivity was obtained with 10s of resting time in between sonication.Pulse mode of sonication was suitable to break down the cell wall of microalgae compared to continuous mode as a lower protein yield was obtained with the application of continuous mode.The optimum condition for protein extraction were found as followed:200g/L glucose as bottom phase with volume ratio of 1:1.25,10s of resting time for ultrasonication,5s of ultrasonication in pulse mode and 0.25g of biomass weight.The high yield of protein about 81% could be obtained from microalgae which demonstrates the potential of this source and expected to play an important role in the future.
基金National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science & Tech- nology of China (No.2006BAE03B06)
文摘Ketalization of catechol was studied with various carbonyl compounds using metal p-toluenesulfonate as biphasic catalysts. The results showed that copper p-toluenesulfonate was the most efficient catalysts for the reaction. The advantages of high activity, stability, reusability and low cost for the simple synthetic procedure made the catalyst one of the best choice for the reaction.