期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A bipolar metal phthalocyanine complex for sodium dual-ion battery
1
作者 Heng-Guo Wang Haidong Wang +2 位作者 Yan Li Yunong Wang Zhenjun Si 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期9-16,共8页
Dual-ion batteries(DIBs) have attracted immense interest as a new generation of energy storage device due to their low cost,environmental friendliness and high working voltage.However,developing DIBs using organic com... Dual-ion batteries(DIBs) have attracted immense interest as a new generation of energy storage device due to their low cost,environmental friendliness and high working voltage.However,developing DIBs using organic compounds as active electrode materials is in its infancy.Herein,we first report a bipolar and self-polymerized Cu phthalocyanine(CuTAPc) as an electrode material for sodium-based DIBs(SDIBs).Benefitting from the bipolar property,CuTAPc could serve as the cathode or anode material to construct metal sodium-based or metal sodium-free SDIB(cell 1 or 2) by coupling with sodium anode or graphite cathode,respectively.As a result,cell 1 displays a high discharge capacity of 195.7 mAh g^(-1) at 50 mA g^(-1) and a high reversible capacity of 57 mAh g^(-1) over 2500 cycles at 1 A g^(-1),and cell 2 shows a high energy density of 324 Wh kg^(-1) and a high power density of 7481 W kg^(-1).Subsequently,the proposed binding mechanism and the bipolar reactivity of CuTAPc have been revealed by the detailed reaction kinetic analysis and ex-situ techniques as well as the density functional theory(DFT) calculations.This work could open a pathway to develop the advanced SDIBs constructed by elemental abundant and environmentally friendly organic materials. 展开更多
关键词 Dual-ion batteries PHTHALOCYANINE Bipolar materials Metal-free batteries Organic batteries
下载PDF
Synthesis and characterization of carbazole-based dendrimers as bipolar host materials for green phosphorescent organic light emitting diodes
2
作者 Ting Zhang Dong-Qing Xu +2 位作者 Jun-Ming Chen Ping Zhang Xu-Chun Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第3期441-446,共6页
A group of novel, carbazole-based dendrimers comprised of the electron-accepting dibenzothiophene core and the electron-donating oligo-carbazole dendrons, namely G1 SF and G2 SF, are synthesized utilizing the Ullmann ... A group of novel, carbazole-based dendrimers comprised of the electron-accepting dibenzothiophene core and the electron-donating oligo-carbazole dendrons, namely G1 SF and G2 SF, are synthesized utilizing the Ullmann C–N coupling reaction. The dendrimers are designed in such a way to show good solubility in common organic solvents, excellent thermochemical stability with decomposition temperatures(Td) up to430 8C, and high HOMO levels in a range from 5.45 e V to 5.37 e V. Results of density functional theory calculations(DFT) indicate G2 SF has an almost complete separation of HOMO and LUMO levels at the holeand electron-transporting moieties; while G1 SF exhibits only partial separation of the HOMO and LUMO levels possibly due to intramolecular charge transfer. Green phosphorescent OLEDs were fabricated by the spin coating method with the dendrimers as hosts and traditional green iridium phosphor as doped emitter. Under ambient conditions, a maximum luminance efficiency(hL) of 19.83 cd A^-1and a maximum external quantum efficiency of 5.85% are achieved for G1 SF, and 15.50 cd A ^-1and 4.57% for G2 SF. 展开更多
关键词 OLEDs Bipolar host materials Dendrimer Carbazole Dibenzothiophene
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部