A reaction-diffusion model for a single species with age structure and nonlocal reaction for periodic time t is derived. Some results about the model with monotone birth function are firstly introduced, and then by co...A reaction-diffusion model for a single species with age structure and nonlocal reaction for periodic time t is derived. Some results about the model with monotone birth function are firstly introduced, and then by constructing two auxiliary equations and squeezing method, the spreading speed for the system with nonmonotone birth function is obtained.展开更多
We illustrate the influence of an external periodic force and noise on a physical system by the example of an oscillator. These two forces seem to be the reverse of each other, since the latter leads to disorder while...We illustrate the influence of an external periodic force and noise on a physical system by the example of an oscillator. These two forces seem to be the reverse of each other, since the latter leads to disorder while the former works in an orderly fashion. Nevertheless, it is shown that they may influence a system in a similar way, sometime even substituting for one another. These examples serve to illustrate one of the main achievements of twentieth-century physics, which has established that deterministic and random phenomena complement rather than contradict each other.展开更多
基金Supported by the NSF of China(11171120)Supported by the Doctoral Program of Higher Education of China(20094407110001)Supported by the NSF of Guangdong Province(10151063101000003)
文摘A reaction-diffusion model for a single species with age structure and nonlocal reaction for periodic time t is derived. Some results about the model with monotone birth function are firstly introduced, and then by constructing two auxiliary equations and squeezing method, the spreading speed for the system with nonmonotone birth function is obtained.
文摘We illustrate the influence of an external periodic force and noise on a physical system by the example of an oscillator. These two forces seem to be the reverse of each other, since the latter leads to disorder while the former works in an orderly fashion. Nevertheless, it is shown that they may influence a system in a similar way, sometime even substituting for one another. These examples serve to illustrate one of the main achievements of twentieth-century physics, which has established that deterministic and random phenomena complement rather than contradict each other.