The concepts of bi-immigration birth and death density matrix in random environment and bi-immigration birth and death process in random environment are introduced. For any bi-immigration birth and death matrix in ran...The concepts of bi-immigration birth and death density matrix in random environment and bi-immigration birth and death process in random environment are introduced. For any bi-immigration birth and death matrix in random environment Q(θ) with birth rate λ 〈 death rate μ, the following results are proved, (1) there is an unique q-process in random environment, P^-(θ*(0);t) = (p^-(θ^*(0);t,i,j),i,j ≥ 0), which is ergodic, that is, lim t→∞(θ^*(0);t,i,j) = π^-(θ^*(0);j) ≥0 does not depend on i ≥ 0 and ∑j≥0π (θ*(0);j) = 1, (2) there is a bi-immigration birth and death process in random enjvironment (X^* = {X^*,t ≥ 0},ε^* = {εt,t ∈ (-∞, ∞)}) with random transition matrix P^-(θ^* (0);t) such that X^* is a strictly stationary process.展开更多
A finite random graph generated by continuous time birth and death processes with exponentially distributed waiting times was investigated, which is similar to a communication network in daily life. The vertices are t...A finite random graph generated by continuous time birth and death processes with exponentially distributed waiting times was investigated, which is similar to a communication network in daily life. The vertices are the living particles, and directed edges go from mothers to daughters. The size of the communication network was studied. Furthermore, the probability of successfully connecting senders with receivers and the transmitting speed of information were obtained.展开更多
This paper describes an accurate method of approximating the moments of the first-passage time for the birth and death Gross National Product GNP diffusion process when the GNP is a determined value or constant absorb...This paper describes an accurate method of approximating the moments of the first-passage time for the birth and death Gross National Product GNP diffusion process when the GNP is a determined value or constant absorbing barrier. This was done by approximating the differential equations by equivalent difference equations.展开更多
A new stochastic epidemic model, that is, a general continuous time birth and death chain model, is formulated based on a deterministic model including vaccination. We use continuous time Markov chain to construct the...A new stochastic epidemic model, that is, a general continuous time birth and death chain model, is formulated based on a deterministic model including vaccination. We use continuous time Markov chain to construct the birth and death process. Through the Kolmogorov forward equation and the theory of moment generating function, the corresponding population expectations are studied. The theoretical result of the stochastic model and deterministic version is also given. Finally, numerical simulations are carried out to substantiate the theoretical results of random walk.展开更多
Based on a new explicit representation of the solution to the Poisson equation with respect to single birth processes, the unified treatment for various criteria on classical problems (including uniqueness, recurrenc...Based on a new explicit representation of the solution to the Poisson equation with respect to single birth processes, the unified treatment for various criteria on classical problems (including uniqueness, recurrence, ergodicity, exponential ergodicity, strong ergodicity, as well as extinction probability, etc.) for the processes are presented.展开更多
The single birth process is a Markov chain, either time-continuous or time-discrete, valuedin the non-negative integers: the system jumps with positive rate from k to k + 1 but not tok +j for all j 2 (this explains th...The single birth process is a Markov chain, either time-continuous or time-discrete, valuedin the non-negative integers: the system jumps with positive rate from k to k + 1 but not tok +j for all j 2 (this explains the meaning of 'single birth') . However, there is no restrictionfor the jumps from k to k - j(1 j< k). This note mainly deals with the uniqueness problemfor the time-continuous processes with an extension: the jumps from k to k + 1 may also beforbidden for at most finite number of k. In both cases (time-continuous or -discrete), thehitting probability and the first moment of the hitting time are also studied展开更多
We obtain sufficient criteria for central limit theorems (CLTs) for ergodic continuous-time Markov chains (CTMCs). We apply the results to establish CLTs for continuous-time single birth processes. Moreover, we pr...We obtain sufficient criteria for central limit theorems (CLTs) for ergodic continuous-time Markov chains (CTMCs). We apply the results to establish CLTs for continuous-time single birth processes. Moreover, we present an explicit expression of the time average variance constant for a single birth process whenever a CLT exists. Several examples are given to illustrate these results.展开更多
Suppose {X(t); t≥ 0} is a single birth process with birth rate qii+l (i 〉 0) and death rate qij (i 〉 j ≥ 0). It is proved in this paper that (i) if there exists aconstant c≥ 0 such that b(i)-a(i)+ci...Suppose {X(t); t≥ 0} is a single birth process with birth rate qii+l (i 〉 0) and death rate qij (i 〉 j ≥ 0). It is proved in this paper that (i) if there exists aconstant c≥ 0 such that b(i)-a(i)+ci is nondecreasing with respect to i and a(i) + u(i) - ci ≥ 0 (i≥ 0), then VarX(t)-EX(t)≥-X(0)e^-2ct,t≥0,or (ii) if there exists a constant u(i) - c≥ 0 such that b(i)-a(i)+ci is non-increasing with respect to i and a(i)+u(i)-ci≤0(i≥0),then VarX(t) - EX(t) ≤ -X(0)e^-2c,t ≥ 0 Hereb(i) = qii+1, a(0) = 0, a(i) = ∑j=^ijqii-j (i≥ 1), u(0) = u(1) =0 and u(i) = 1/2∑j=^ij(j - 1)qii-j (i ≥ 2) . This result covers the results for birth-death processes obtained in [7].展开更多
The state 0 of a birth and death process with state space E = {0, 1, 2,....} is a barrier which can be classified into four kinds: reflection, absorption, leaping reflection, quasi-leaping reflection. For the first, ...The state 0 of a birth and death process with state space E = {0, 1, 2,....} is a barrier which can be classified into four kinds: reflection, absorption, leaping reflection, quasi-leaping reflection. For the first, second and fourth barriers, the characteristic numbers of different forms have been introduced. In this paper unified characteristic numbers for birth and death processes with barriers were introduced, the related equations were solved and the solutions were expressed by unified characteristic numbers. This paper concerns work solving probability construction problem of birth and death processes with leaping reflection barrier and quasi-leaping reflection barrier.展开更多
0 .Introduction The mathematical eqnivalenoe of Brownian切otion and olaosioal poten七ialtheory has great imPulsed the study of Potentials of Markov Prooesse
For discrete spectrum of 1D second-order differential/difference operators(with or without potential(killing),with the maximal/minimal domain),a pair of unified dual criteria are presented in terms of two explicit mea...For discrete spectrum of 1D second-order differential/difference operators(with or without potential(killing),with the maximal/minimal domain),a pair of unified dual criteria are presented in terms of two explicit measures and the harmonic function of the operators.Interestingly,these criteria can be read out from the ones for the exponential convergence of four types of stability studied earlier,simply replacing the‘finite supremum’by‘vanishing at infinity’.Except a dual technique,the main tool used here is a transform in terms of the harmonic function,to which two new practical algorithms are introduced in the discrete context and two successive approximation schemes are reviewed in the continuous context.All of them are illustrated by examples.The main body of the paper is devoted to the hard part of the story,the easier part but powerful one is delayed to the end of the paper.展开更多
We study an M/PH/1 queue with phase type working vacation and vacation interruption where the vacation time follows a phase type distribution. The server serves the customers at a lower rate in a vacation period. The ...We study an M/PH/1 queue with phase type working vacation and vacation interruption where the vacation time follows a phase type distribution. The server serves the customers at a lower rate in a vacation period. The server comes back to the regular busy period at a service completion without completing the vacation. Such policy is called vacation interruption. In terms of quasi birth and death process and matrix-geometric solution method, we obtain the stationary queue length distribution. Moreover we obtain the conditional stochastic decomposition structures of queue length and waiting time when the service time distribution in the regular busy period is exponential.展开更多
Consider a finite absorbing Markov generator, irreducible on the non-absorbing states. PerronFrobenius theory ensures the existence of a corresponding positive eigenvector ψ. The goal of the paper is to give bounds o...Consider a finite absorbing Markov generator, irreducible on the non-absorbing states. PerronFrobenius theory ensures the existence of a corresponding positive eigenvector ψ. The goal of the paper is to give bounds on the amplitude max ψ/ min ψ. Two approaches are proposed: One using a path method and the other one, restricted to the reversible situation, based on spectral estimates. The latter approach is extended to denumerable birth and death processes absorbing at 0 for which infinity is an entrance boundary. The interest of estimating the ratio is the reduction of the quantitative study of convergence to quasi-stationarity to the convergence to equilibrium of related ergodic processes, as seen by Diaconis and Miclo(2014).展开更多
基金Supported by the NNSF of China (10371092,10771185) the Foundation of Whuan University
文摘The concepts of bi-immigration birth and death density matrix in random environment and bi-immigration birth and death process in random environment are introduced. For any bi-immigration birth and death matrix in random environment Q(θ) with birth rate λ 〈 death rate μ, the following results are proved, (1) there is an unique q-process in random environment, P^-(θ*(0);t) = (p^-(θ^*(0);t,i,j),i,j ≥ 0), which is ergodic, that is, lim t→∞(θ^*(0);t,i,j) = π^-(θ^*(0);j) ≥0 does not depend on i ≥ 0 and ∑j≥0π (θ*(0);j) = 1, (2) there is a bi-immigration birth and death process in random enjvironment (X^* = {X^*,t ≥ 0},ε^* = {εt,t ∈ (-∞, ∞)}) with random transition matrix P^-(θ^* (0);t) such that X^* is a strictly stationary process.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10471088, 60572126)
文摘A finite random graph generated by continuous time birth and death processes with exponentially distributed waiting times was investigated, which is similar to a communication network in daily life. The vertices are the living particles, and directed edges go from mothers to daughters. The size of the communication network was studied. Furthermore, the probability of successfully connecting senders with receivers and the transmitting speed of information were obtained.
文摘This paper describes an accurate method of approximating the moments of the first-passage time for the birth and death Gross National Product GNP diffusion process when the GNP is a determined value or constant absorbing barrier. This was done by approximating the differential equations by equivalent difference equations.
文摘A new stochastic epidemic model, that is, a general continuous time birth and death chain model, is formulated based on a deterministic model including vaccination. We use continuous time Markov chain to construct the birth and death process. Through the Kolmogorov forward equation and the theory of moment generating function, the corresponding population expectations are studied. The theoretical result of the stochastic model and deterministic version is also given. Finally, numerical simulations are carried out to substantiate the theoretical results of random walk.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 11131003), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20100003110005), the "985" project from the Ministry of Education in China, the Fundamental Research Funds for the Central Universities, and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Based on a new explicit representation of the solution to the Poisson equation with respect to single birth processes, the unified treatment for various criteria on classical problems (including uniqueness, recurrence, ergodicity, exponential ergodicity, strong ergodicity, as well as extinction probability, etc.) for the processes are presented.
文摘The single birth process is a Markov chain, either time-continuous or time-discrete, valuedin the non-negative integers: the system jumps with positive rate from k to k + 1 but not tok +j for all j 2 (this explains the meaning of 'single birth') . However, there is no restrictionfor the jumps from k to k - j(1 j< k). This note mainly deals with the uniqueness problemfor the time-continuous processes with an extension: the jumps from k to k + 1 may also beforbidden for at most finite number of k. In both cases (time-continuous or -discrete), thehitting probability and the first moment of the hitting time are also studied
文摘We obtain sufficient criteria for central limit theorems (CLTs) for ergodic continuous-time Markov chains (CTMCs). We apply the results to establish CLTs for continuous-time single birth processes. Moreover, we present an explicit expression of the time average variance constant for a single birth process whenever a CLT exists. Several examples are given to illustrate these results.
基金Supported by the National Natural Science Foundation of China(No.10471130,10371024)
文摘Suppose {X(t); t≥ 0} is a single birth process with birth rate qii+l (i 〉 0) and death rate qij (i 〉 j ≥ 0). It is proved in this paper that (i) if there exists aconstant c≥ 0 such that b(i)-a(i)+ci is nondecreasing with respect to i and a(i) + u(i) - ci ≥ 0 (i≥ 0), then VarX(t)-EX(t)≥-X(0)e^-2ct,t≥0,or (ii) if there exists a constant u(i) - c≥ 0 such that b(i)-a(i)+ci is non-increasing with respect to i and a(i)+u(i)-ci≤0(i≥0),then VarX(t) - EX(t) ≤ -X(0)e^-2c,t ≥ 0 Hereb(i) = qii+1, a(0) = 0, a(i) = ∑j=^ijqii-j (i≥ 1), u(0) = u(1) =0 and u(i) = 1/2∑j=^ij(j - 1)qii-j (i ≥ 2) . This result covers the results for birth-death processes obtained in [7].
基金Supported by the National Natural Science Foundation of China (Grant No. 10571051 and 10871064 )the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20040542006)the Key Labor. of Coput.Stoch.Math.Univ. of Hunan (No. 09K026)
文摘The state 0 of a birth and death process with state space E = {0, 1, 2,....} is a barrier which can be classified into four kinds: reflection, absorption, leaping reflection, quasi-leaping reflection. For the first, second and fourth barriers, the characteristic numbers of different forms have been introduced. In this paper unified characteristic numbers for birth and death processes with barriers were introduced, the related equations were solved and the solutions were expressed by unified characteristic numbers. This paper concerns work solving probability construction problem of birth and death processes with leaping reflection barrier and quasi-leaping reflection barrier.
文摘0 .Introduction The mathematical eqnivalenoe of Brownian切otion and olaosioal poten七ialtheory has great imPulsed the study of Potentials of Markov Prooesse
基金The author thanks S.Kotani for introducing[7]and[9]to him and R.O˘ınarov for sending him the original version of[12].Thanks are also given to H.J.Zhang and Z.W.Liao for their corrections of an earlier version of the paper.Research supported in part by the National Natural Science Foundation of China(No.11131003)the“985”project from the Ministry of Education in China,and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘For discrete spectrum of 1D second-order differential/difference operators(with or without potential(killing),with the maximal/minimal domain),a pair of unified dual criteria are presented in terms of two explicit measures and the harmonic function of the operators.Interestingly,these criteria can be read out from the ones for the exponential convergence of four types of stability studied earlier,simply replacing the‘finite supremum’by‘vanishing at infinity’.Except a dual technique,the main tool used here is a transform in terms of the harmonic function,to which two new practical algorithms are introduced in the discrete context and two successive approximation schemes are reviewed in the continuous context.All of them are illustrated by examples.The main body of the paper is devoted to the hard part of the story,the easier part but powerful one is delayed to the end of the paper.
文摘We study an M/PH/1 queue with phase type working vacation and vacation interruption where the vacation time follows a phase type distribution. The server serves the customers at a lower rate in a vacation period. The server comes back to the regular busy period at a service completion without completing the vacation. Such policy is called vacation interruption. In terms of quasi birth and death process and matrix-geometric solution method, we obtain the stationary queue length distribution. Moreover we obtain the conditional stochastic decomposition structures of queue length and waiting time when the service time distribution in the regular busy period is exponential.
基金supported by Agence Nationale de la Recherche(Grant Nos.ANR-11-LABX-0040-CIMIANR-11-IDEX-0002-02 and ANR-12-BS01-0019)
文摘Consider a finite absorbing Markov generator, irreducible on the non-absorbing states. PerronFrobenius theory ensures the existence of a corresponding positive eigenvector ψ. The goal of the paper is to give bounds on the amplitude max ψ/ min ψ. Two approaches are proposed: One using a path method and the other one, restricted to the reversible situation, based on spectral estimates. The latter approach is extended to denumerable birth and death processes absorbing at 0 for which infinity is an entrance boundary. The interest of estimating the ratio is the reduction of the quantitative study of convergence to quasi-stationarity to the convergence to equilibrium of related ergodic processes, as seen by Diaconis and Miclo(2014).