Dye sensitized solar cell represents a promising method for the conversion of solar energy to electric energy. In the present work free N,N'-bis(salicyli-dene)ethylenediamine and its copper (II) complex were synth...Dye sensitized solar cell represents a promising method for the conversion of solar energy to electric energy. In the present work free N,N'-bis(salicyli-dene)ethylenediamine and its copper (II) complex were synthesized, characterized, and investigated for use as dye sensitizers in the fabrication of dye sensitized solar cells. The dyes were characterized using UV-Vis, Steady State Florescence, and Fluorescence Lifetime, Thermogravimetric Analysis, Differential Scanning Calorimetry, and Cyclic Voltammetry. The thermogravimetric analyses of the ligand and the ligand Copper complex demonstrate the stabilizing effect of the copper ion on the ligand complex. Additionally, the copper ion is shown to stabilize the structure, as evidenced by the 150oC increase in the extrapolated onset temperature of the decomposition event. The ligand copper complex is further stabilized by the presence of the copper, which is determined by the 6.34% residue that remained at the end of the thermogravimetric analysis, compared with 0% residue when applying the same condition for the ligand without copper. The current-voltage characteristics of the cells and the electrochemical impedance were determined. The photovoltaic performance of the solar cell devices fabricated using N,N'-bis(salicylidene) ethylenediamine dye was found to be slightly better than those produced from the copper complex. The solar to electric power efficiency of the ligand-based dye sensitized solar cell was 0.14% and that of the copper complex was found to 0.12%. Although the difference in the cell efficiency is quite small, it is obvious that the insertion of Copper into the ligand did not enhance the performance of the solar cells. The photocurrent-photovoltage results are consistent with the absorption spectra that showed a more prominent band for the ligand. The free hydroxyl groups, present in the ligand but absent from the copper complex owing to their coordination with the copper metal, could be responsible for the difference in the performance of the devices. The hydroxyl groups get attached to the TiO2 and facilitate the transfer of electrons.展开更多
The Co(II) complex I and ammonium salt II were synthesized from the direct reaction of 1,2-ethylenediamine and cobaltous acetate tetrahydrate and manganese acetate tetrahydrate in anhydrous ethanol. Treatment of N,N...The Co(II) complex I and ammonium salt II were synthesized from the direct reaction of 1,2-ethylenediamine and cobaltous acetate tetrahydrate and manganese acetate tetrahydrate in anhydrous ethanol. Treatment of N,N'-bis(salicylidene)ethylenediamine with Cu(OAc)2·H2O results in the formation of Cu(II) complex III. C14H37CoNaO8 (I): triclinic, space group P1, a = 8.6296(12), b = 12.0291(17), c = 12.1108(17) A, α = 75.335(2), β = 69.991(2), γ = 72.248(2)°, V= 1109.4(3) A3, Z = 2, ρcaloa = 1.342 g/cm3, the final R= 0.0342 for 4817 observed reflections with I 〉 2σ(I) and Rw = 0.1263 for all data. C6H16N204 (II): space group P1, a = 5.5513(10), b = 5.5589(11), c = 7.4437(14) A, α = 94.332(4), β = 104.497(4), γ = 103.487(4)°,V= 214.06(7) A3, Z = 1, ρcalcd = 1.398 g/cm3, the final R = 0.0431 for 829 observed reflections with I〉 2σ(I) and Rw = 0.1263 for all data. C14H37CuN40 (III), space group P21/n, a = 9.050(9), b = 18.434(17), c = 11.659(11) A, β = 107.134(19)°, V= 1859(3) A3, Z = 4, ρcalcd =1.443 g/cm3, the final R = 0.0616 for 3308 observed reflections (O 〉 2σ(I)) and Rw = 0.1229 for all data. Their structures were all determined by X-ray diffraction, elemental analysis and IR.展开更多
As a synergistic anti tumor agent, N solanesyl N,N ′ bis(3,4 dimethoxybenzyl)ethylenediamine(5) was synthesized starting from vanillin and solanesol. Methylation of vanillin gave veratradehyde(1), which after couplin...As a synergistic anti tumor agent, N solanesyl N,N ′ bis(3,4 dimethoxybenzyl)ethylenediamine(5) was synthesized starting from vanillin and solanesol. Methylation of vanillin gave veratradehyde(1), which after coupling with ethylenediamine was then catalytically reduced to N,N ′ bis(3,4 dimethoxybenzyl)ethylenediamine(3), which was coupled with solanesol bromide (4) to give (5). The processes of synthesis of (3) and separation of (5) have been improved with total reaction yield being increased. The structures of the compounds were confirmed by IR, 1 H NMR, MS and elemental analysis.展开更多
以2-氯喹啉和苯硼酸为原料,在四(三苯基膦)钯作催化剂下反应得到主配体2-苯基喹啉(pq),之后pq与水合三氯化铱在乙二醇单乙醚溶剂中反应得到铱的氯桥二聚体(pq)_2Ir(μ-Cl_2)Ir(pq)_2,然后在碱性条件下和乙酰丙酮反应合成出高效磷光红光...以2-氯喹啉和苯硼酸为原料,在四(三苯基膦)钯作催化剂下反应得到主配体2-苯基喹啉(pq),之后pq与水合三氯化铱在乙二醇单乙醚溶剂中反应得到铱的氯桥二聚体(pq)_2Ir(μ-Cl_2)Ir(pq)_2,然后在碱性条件下和乙酰丙酮反应合成出高效磷光红光材料二(2-苯基喹啉-C2,N')(乙酰丙酮)合铱(Ⅲ)Ir(pq)_2(acac)。通过元素分析、红外光谱、核磁共振谱(~1 H NMR、^(13)C NMR)、质谱和单晶X射线衍射等表征手段确定了分子结构,利用紫外-可见吸收光谱和光致发光光谱对其光物理性能进行了测试。结果表明,Ir(pq)_2(acac)为电中性八面体配合物,Ir—O键的平均长度为0.21741(18)nm,而Ir—C键的平均长度0.1983(3)nm,Ir—N键的平均长度为0.2079(2)nm,在600nm处出现了较强的红光发射,其合成产率>95%,该方法适于Ir(pq)_2(acac)的小批量制备。展开更多
The N,N bis( o hydroxy p methoxybezophenone) ethylenediamine complexes with copper(Ⅱ) ?nickel(Ⅱ) and cobalt(Ⅱ)[MC 30 H 26 N 2O 4] were synthesized by solid liquid phase reaction. The complexes were characterized...The N,N bis( o hydroxy p methoxybezophenone) ethylenediamine complexes with copper(Ⅱ) ?nickel(Ⅱ) and cobalt(Ⅱ)[MC 30 H 26 N 2O 4] were synthesized by solid liquid phase reaction. The complexes were characterized by elemental analysis, XRD, UV, IR and 1H NMR. The crystal structure of the complexes belongs to triclinic system with the cell parameters: a =1 297 1 nm, b =1 621 0 nm, c =2 047 0 nm, α =85 40°, β =88 80°, γ =99 00° for [CuC 30 H 26 N 2O 4·0 5H 2O]; a =1 300 2 nm, b =1 882 6 nm, c =2 127 4 nm, α =86 47°, β =89 23°, γ =99 11° for [NiC 30 H 26 N 2O 4]; a =1 286 5 nm, b =1 596 1 nm, c =2 056 9 nm, α =87 95°, β =93 17°, γ =98 21° for [CoC 30 H 26 N 2O 4], respectively. The N and O atoms in the complexes appeared coordinated directly to the metal ions. A quadridentate chelate may be formed.展开更多
文摘Dye sensitized solar cell represents a promising method for the conversion of solar energy to electric energy. In the present work free N,N'-bis(salicyli-dene)ethylenediamine and its copper (II) complex were synthesized, characterized, and investigated for use as dye sensitizers in the fabrication of dye sensitized solar cells. The dyes were characterized using UV-Vis, Steady State Florescence, and Fluorescence Lifetime, Thermogravimetric Analysis, Differential Scanning Calorimetry, and Cyclic Voltammetry. The thermogravimetric analyses of the ligand and the ligand Copper complex demonstrate the stabilizing effect of the copper ion on the ligand complex. Additionally, the copper ion is shown to stabilize the structure, as evidenced by the 150oC increase in the extrapolated onset temperature of the decomposition event. The ligand copper complex is further stabilized by the presence of the copper, which is determined by the 6.34% residue that remained at the end of the thermogravimetric analysis, compared with 0% residue when applying the same condition for the ligand without copper. The current-voltage characteristics of the cells and the electrochemical impedance were determined. The photovoltaic performance of the solar cell devices fabricated using N,N'-bis(salicylidene) ethylenediamine dye was found to be slightly better than those produced from the copper complex. The solar to electric power efficiency of the ligand-based dye sensitized solar cell was 0.14% and that of the copper complex was found to 0.12%. Although the difference in the cell efficiency is quite small, it is obvious that the insertion of Copper into the ligand did not enhance the performance of the solar cells. The photocurrent-photovoltage results are consistent with the absorption spectra that showed a more prominent band for the ligand. The free hydroxyl groups, present in the ligand but absent from the copper complex owing to their coordination with the copper metal, could be responsible for the difference in the performance of the devices. The hydroxyl groups get attached to the TiO2 and facilitate the transfer of electrons.
文摘The Co(II) complex I and ammonium salt II were synthesized from the direct reaction of 1,2-ethylenediamine and cobaltous acetate tetrahydrate and manganese acetate tetrahydrate in anhydrous ethanol. Treatment of N,N'-bis(salicylidene)ethylenediamine with Cu(OAc)2·H2O results in the formation of Cu(II) complex III. C14H37CoNaO8 (I): triclinic, space group P1, a = 8.6296(12), b = 12.0291(17), c = 12.1108(17) A, α = 75.335(2), β = 69.991(2), γ = 72.248(2)°, V= 1109.4(3) A3, Z = 2, ρcaloa = 1.342 g/cm3, the final R= 0.0342 for 4817 observed reflections with I 〉 2σ(I) and Rw = 0.1263 for all data. C6H16N204 (II): space group P1, a = 5.5513(10), b = 5.5589(11), c = 7.4437(14) A, α = 94.332(4), β = 104.497(4), γ = 103.487(4)°,V= 214.06(7) A3, Z = 1, ρcalcd = 1.398 g/cm3, the final R = 0.0431 for 829 observed reflections with I〉 2σ(I) and Rw = 0.1263 for all data. C14H37CuN40 (III), space group P21/n, a = 9.050(9), b = 18.434(17), c = 11.659(11) A, β = 107.134(19)°, V= 1859(3) A3, Z = 4, ρcalcd =1.443 g/cm3, the final R = 0.0616 for 3308 observed reflections (O 〉 2σ(I)) and Rw = 0.1229 for all data. Their structures were all determined by X-ray diffraction, elemental analysis and IR.
文摘As a synergistic anti tumor agent, N solanesyl N,N ′ bis(3,4 dimethoxybenzyl)ethylenediamine(5) was synthesized starting from vanillin and solanesol. Methylation of vanillin gave veratradehyde(1), which after coupling with ethylenediamine was then catalytically reduced to N,N ′ bis(3,4 dimethoxybenzyl)ethylenediamine(3), which was coupled with solanesol bromide (4) to give (5). The processes of synthesis of (3) and separation of (5) have been improved with total reaction yield being increased. The structures of the compounds were confirmed by IR, 1 H NMR, MS and elemental analysis.
文摘以2-氯喹啉和苯硼酸为原料,在四(三苯基膦)钯作催化剂下反应得到主配体2-苯基喹啉(pq),之后pq与水合三氯化铱在乙二醇单乙醚溶剂中反应得到铱的氯桥二聚体(pq)_2Ir(μ-Cl_2)Ir(pq)_2,然后在碱性条件下和乙酰丙酮反应合成出高效磷光红光材料二(2-苯基喹啉-C2,N')(乙酰丙酮)合铱(Ⅲ)Ir(pq)_2(acac)。通过元素分析、红外光谱、核磁共振谱(~1 H NMR、^(13)C NMR)、质谱和单晶X射线衍射等表征手段确定了分子结构,利用紫外-可见吸收光谱和光致发光光谱对其光物理性能进行了测试。结果表明,Ir(pq)_2(acac)为电中性八面体配合物,Ir—O键的平均长度为0.21741(18)nm,而Ir—C键的平均长度0.1983(3)nm,Ir—N键的平均长度为0.2079(2)nm,在600nm处出现了较强的红光发射,其合成产率>95%,该方法适于Ir(pq)_2(acac)的小批量制备。
文摘The N,N bis( o hydroxy p methoxybezophenone) ethylenediamine complexes with copper(Ⅱ) ?nickel(Ⅱ) and cobalt(Ⅱ)[MC 30 H 26 N 2O 4] were synthesized by solid liquid phase reaction. The complexes were characterized by elemental analysis, XRD, UV, IR and 1H NMR. The crystal structure of the complexes belongs to triclinic system with the cell parameters: a =1 297 1 nm, b =1 621 0 nm, c =2 047 0 nm, α =85 40°, β =88 80°, γ =99 00° for [CuC 30 H 26 N 2O 4·0 5H 2O]; a =1 300 2 nm, b =1 882 6 nm, c =2 127 4 nm, α =86 47°, β =89 23°, γ =99 11° for [NiC 30 H 26 N 2O 4]; a =1 286 5 nm, b =1 596 1 nm, c =2 056 9 nm, α =87 95°, β =93 17°, γ =98 21° for [CoC 30 H 26 N 2O 4], respectively. The N and O atoms in the complexes appeared coordinated directly to the metal ions. A quadridentate chelate may be formed.