This paper reports a novel micro-blast driven manufacturing process for micro-forming of Aluminum foils. The micro-blast is realized by using a nanoenergetic material system comprising of Bi_2O_3 microrods and aluminu...This paper reports a novel micro-blast driven manufacturing process for micro-forming of Aluminum foils. The micro-blast is realized by using a nanoenergetic material system comprising of Bi_2O_3 microrods and aluminum particles. There is an enhanced need of forming of thin aluminum foil structures in small regions from point of view of drug packaging etc. The process developed caters to this need by using a single shot forming process using a micro-blast source. The micro-blast that is generated from an energetic composite system is made highly tunable by modulating the peak pressure generated through the blasting process and their impact in micro-forming of thin aluminum foils is observed through parametric studies. The engineering challenge involved in these experiments is to tune the blast pressure properties in order to address the forming of thin metal sheets with limiting boundary values as defined by the failure criteria. A variety of characterization techniques related to a thorough analysis of the synthesized material viz. X-ray diffraction(XRD), Scanning Electron Microscopy(SEM) etc, are used to tune the functional properties like gauge blast pressure etc, of material system. We have found a material system that can generate a maximum peak pressure of 73.8 MPa with pressurization rate of 2460 GPas^(-1) and that is able to accomplish micro-forming on thin metal foils(around 0.3 mm thickness). Experimental investigations demonstrate that tunabilty aspect of the energetic composites when exercised can enable variant processes such as embossing, coining, drilling etc. which may be of significant utility to drug packaging industries. A proper mathematical modeling of the forming process and critical process parameters therein have also been detailed.展开更多
A series of chiral N-Boc-α-aminoaldehydes were synthesized in good yields and high purity via esterification of Boc-L-amino acids followed by reduction with sodium bis (2-methoxy- ethoxy)aluminum hydride.
基金support provided by Boeing India to Indian Institute of Technology Kanpur,IndiaTEQIP funding from Government of India provided to G.B.Pant Institute of Engineering&Technology Pauri-Garhwal India
文摘This paper reports a novel micro-blast driven manufacturing process for micro-forming of Aluminum foils. The micro-blast is realized by using a nanoenergetic material system comprising of Bi_2O_3 microrods and aluminum particles. There is an enhanced need of forming of thin aluminum foil structures in small regions from point of view of drug packaging etc. The process developed caters to this need by using a single shot forming process using a micro-blast source. The micro-blast that is generated from an energetic composite system is made highly tunable by modulating the peak pressure generated through the blasting process and their impact in micro-forming of thin aluminum foils is observed through parametric studies. The engineering challenge involved in these experiments is to tune the blast pressure properties in order to address the forming of thin metal sheets with limiting boundary values as defined by the failure criteria. A variety of characterization techniques related to a thorough analysis of the synthesized material viz. X-ray diffraction(XRD), Scanning Electron Microscopy(SEM) etc, are used to tune the functional properties like gauge blast pressure etc, of material system. We have found a material system that can generate a maximum peak pressure of 73.8 MPa with pressurization rate of 2460 GPas^(-1) and that is able to accomplish micro-forming on thin metal foils(around 0.3 mm thickness). Experimental investigations demonstrate that tunabilty aspect of the energetic composites when exercised can enable variant processes such as embossing, coining, drilling etc. which may be of significant utility to drug packaging industries. A proper mathematical modeling of the forming process and critical process parameters therein have also been detailed.
基金supported by the National Natural Science Foundation of China(No.30230400)"863"Hi-Tech Program of China(No.2004 AA2 Z3781)the State Key Program of Basic Research of China(No.2004GB518907).
文摘A series of chiral N-Boc-α-aminoaldehydes were synthesized in good yields and high purity via esterification of Boc-L-amino acids followed by reduction with sodium bis (2-methoxy- ethoxy)aluminum hydride.