以三(三甲基硅基)肼锂和对甲苯磺酰叠氮为起始原料,合成了高活性的1,2‐二(三甲基硅基)二氮烯(BSD),进一步利用其二聚反应,合成了1,1,4,4‐四(三甲基硅基)四氮烯(TST),总收率约5.0%,通过核磁共振谱、红外光谱、元素分析和紫外‐可见吸...以三(三甲基硅基)肼锂和对甲苯磺酰叠氮为起始原料,合成了高活性的1,2‐二(三甲基硅基)二氮烯(BSD),进一步利用其二聚反应,合成了1,1,4,4‐四(三甲基硅基)四氮烯(TST),总收率约5.0%,通过核磁共振谱、红外光谱、元素分析和紫外‐可见吸收光谱对BSD和TST的结构进行了表征。通过量子化学计算方法研究了BSD二聚反应的机理。结果表明,发现其先异构化为1,1‐二(三甲基硅基)二氮烯中间体,然后两个中间体相互作用形成TST,两个过程分别需要高达103.0 k J·mol^(-1)和114.3 k J·mol^(-1)的活化能,该理论结果与高温条件有利于BSD转化为TST的实验现象一致。展开更多
文摘以三(三甲基硅基)肼锂和对甲苯磺酰叠氮为起始原料,合成了高活性的1,2‐二(三甲基硅基)二氮烯(BSD),进一步利用其二聚反应,合成了1,1,4,4‐四(三甲基硅基)四氮烯(TST),总收率约5.0%,通过核磁共振谱、红外光谱、元素分析和紫外‐可见吸收光谱对BSD和TST的结构进行了表征。通过量子化学计算方法研究了BSD二聚反应的机理。结果表明,发现其先异构化为1,1‐二(三甲基硅基)二氮烯中间体,然后两个中间体相互作用形成TST,两个过程分别需要高达103.0 k J·mol^(-1)和114.3 k J·mol^(-1)的活化能,该理论结果与高温条件有利于BSD转化为TST的实验现象一致。