针对传统次硝酸铋制备过程中产生污染环境的有毒气体二氧化氮及大量氨氮废水等问题,提出采用液相球磨转化法制备次硝酸铋新工艺,运用正交试验和单因素试验方法对氧化铋球磨转化制备次硝酸铋工艺进行研究。研究结果表明:各因素对转化率...针对传统次硝酸铋制备过程中产生污染环境的有毒气体二氧化氮及大量氨氮废水等问题,提出采用液相球磨转化法制备次硝酸铋新工艺,运用正交试验和单因素试验方法对氧化铋球磨转化制备次硝酸铋工艺进行研究。研究结果表明:各因素对转化率影响性由大至小的顺序为液固比、球料比、硝酸浓度、反应时间;氧化铋球磨转化制备次硝酸铋的最佳工艺条件如下:硝酸浓度为0.5 mol/L,液固比为15:1 m L/g,球料比为10:1(质量比),反应时间为1 h,在此最佳工艺条件下,氧化铋的平均转化率为90.71%。制备的次硝酸铋主要呈棒状形态分布。展开更多
为提高铝粉与海水的反应效率和速率,在惰性氛围下,采用高能球磨法通过多次变速循环工艺制备得到了铝基水反应活性材料。通过扫描电子显微镜、热重分析仪、比表面测试等分析表征材料的微观结构和氧化性能;采用自主设计的金属/水反应装置...为提高铝粉与海水的反应效率和速率,在惰性氛围下,采用高能球磨法通过多次变速循环工艺制备得到了铝基水反应活性材料。通过扫描电子显微镜、热重分析仪、比表面测试等分析表征材料的微观结构和氧化性能;采用自主设计的金属/水反应装置,实时记录铝基水反应金属材料与海水反应产生的氢气量,研究铝基水反应活性材料的活性。研究结果表明:高能球磨能提高铝基材料与海水的反应活性,铝粉经过球磨后反应效率达到原先的2倍;球磨过程中添加剂铋的添加能进一步提高铝基水反应材料的活性;反应总产率能够达到71.2%,其快速期氢气产生反应速率为210.7 m L/(min·g)。制备的铝基水反应活性材料在高能水反应金属燃料推进剂和制氢领域都具有应用价值。展开更多
文摘针对传统次硝酸铋制备过程中产生污染环境的有毒气体二氧化氮及大量氨氮废水等问题,提出采用液相球磨转化法制备次硝酸铋新工艺,运用正交试验和单因素试验方法对氧化铋球磨转化制备次硝酸铋工艺进行研究。研究结果表明:各因素对转化率影响性由大至小的顺序为液固比、球料比、硝酸浓度、反应时间;氧化铋球磨转化制备次硝酸铋的最佳工艺条件如下:硝酸浓度为0.5 mol/L,液固比为15:1 m L/g,球料比为10:1(质量比),反应时间为1 h,在此最佳工艺条件下,氧化铋的平均转化率为90.71%。制备的次硝酸铋主要呈棒状形态分布。
文摘为提高铝粉与海水的反应效率和速率,在惰性氛围下,采用高能球磨法通过多次变速循环工艺制备得到了铝基水反应活性材料。通过扫描电子显微镜、热重分析仪、比表面测试等分析表征材料的微观结构和氧化性能;采用自主设计的金属/水反应装置,实时记录铝基水反应金属材料与海水反应产生的氢气量,研究铝基水反应活性材料的活性。研究结果表明:高能球磨能提高铝基材料与海水的反应活性,铝粉经过球磨后反应效率达到原先的2倍;球磨过程中添加剂铋的添加能进一步提高铝基水反应材料的活性;反应总产率能够达到71.2%,其快速期氢气产生反应速率为210.7 m L/(min·g)。制备的铝基水反应活性材料在高能水反应金属燃料推进剂和制氢领域都具有应用价值。