High-quality Pt-based catalysts are highly desirable for ethanol oxidation reaction(EOR),which is of critical importance for the commercial applications of direct ethanol fuel cells(DEFCs).However,most of the Pt-based...High-quality Pt-based catalysts are highly desirable for ethanol oxidation reaction(EOR),which is of critical importance for the commercial applications of direct ethanol fuel cells(DEFCs).However,most of the Pt-based catalysts have suffered from high cost and low operation durability.Herein a two-step method has been developed to synthesize porous Pt nanoframes decorated with Bi(OH)3,which show excellent catalytic activity and operation durability in both alkaline and acidic media.For example,the nanoframes show a mass activity of 6.87 A·mgPt−1 in alkaline media,which is 13.5-fold higher than that of commercial Pt/C.More importantly,the catalyst can be reactivated simply,which shows negligible activity loss after running for 180,000 s.Further in situ attenuated total reflection-infrared(ATR-IR)absorption spectroscopy and CO-stripping experiments indicate that surface Bi(OH)3 species can greatly facilitate the formation of adsorbed OH species and subsequently remove carbonaceous poison,resulting in a significantly enhanced stability towards EOR.This work may favor the tailoring of desired electrocatalysts with high activity and durability for future commercial application of DEFCs.展开更多
基金supported by the National Key R&D Program of China(No.2016YFE0129600)the National Natural Science Foundation of China(Nos.21673150 and 21703146)+1 种基金the financial support from the 111 Project,Collaborative Innovation Center of Suzhou Nano Science and Technology(NANO-CIC)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘High-quality Pt-based catalysts are highly desirable for ethanol oxidation reaction(EOR),which is of critical importance for the commercial applications of direct ethanol fuel cells(DEFCs).However,most of the Pt-based catalysts have suffered from high cost and low operation durability.Herein a two-step method has been developed to synthesize porous Pt nanoframes decorated with Bi(OH)3,which show excellent catalytic activity and operation durability in both alkaline and acidic media.For example,the nanoframes show a mass activity of 6.87 A·mgPt−1 in alkaline media,which is 13.5-fold higher than that of commercial Pt/C.More importantly,the catalyst can be reactivated simply,which shows negligible activity loss after running for 180,000 s.Further in situ attenuated total reflection-infrared(ATR-IR)absorption spectroscopy and CO-stripping experiments indicate that surface Bi(OH)3 species can greatly facilitate the formation of adsorbed OH species and subsequently remove carbonaceous poison,resulting in a significantly enhanced stability towards EOR.This work may favor the tailoring of desired electrocatalysts with high activity and durability for future commercial application of DEFCs.