The anode refining process to remove lead and silver from crude bismuth was studied. The study was carried out with chloride melts at 400 ℃ in a crucible-in-crucible type pyrex glass electrolyzer. The kinetic regula...The anode refining process to remove lead and silver from crude bismuth was studied. The study was carried out with chloride melts at 400 ℃ in a crucible-in-crucible type pyrex glass electrolyzer. The kinetic regularity of the removal of lead and silver was found to be in accordance with the equation:Inc=b-kt. Values of constant k were determined for different current density.The relationship between the purity of refined bismuth and its direct yield wasalso determined. A two-stage anode refining method was established. The firststage. was to remove most part of lead (about 90%) at higher current density ;the second stage was used for removing silver and the remains of lead at lowercurrent density. Under appropriate conditions high purity (WPb < 0.001%,WAd<0.004%) of bismuth could be obtained from crude bismuth with the direct yield of bismuth up to 98%.展开更多
SrBi4Ti4O15 powder was synthesized by conventional solid state synthesis ( CS ) and molten salt synthesis ( MSS ) . MSS method can synthesize plate-like SrBi4Ti4O15 at lower temperature (900℃) than CS method. P...SrBi4Ti4O15 powder was synthesized by conventional solid state synthesis ( CS ) and molten salt synthesis ( MSS ) . MSS method can synthesize plate-like SrBi4Ti4O15 at lower temperature (900℃) than CS method. Plate-like form becomes more distinct when the synthesis temperature increases. This would help cause the grain orientation of the ceramics after sintering. The sintered samples of MSS had grain orientation at (0,0, 10) plane. The degree of (0,0,10) grain orientation F was 62.1% . Hot pressing made (0,0,10) grain orientation more distinct ( F = 85.7% ). The microstructures of the sintered samples were detected by SEM. Due to the grain orientation the density of samples fabricated by MSS was lower than that of prepared by CS.展开更多
文摘The anode refining process to remove lead and silver from crude bismuth was studied. The study was carried out with chloride melts at 400 ℃ in a crucible-in-crucible type pyrex glass electrolyzer. The kinetic regularity of the removal of lead and silver was found to be in accordance with the equation:Inc=b-kt. Values of constant k were determined for different current density.The relationship between the purity of refined bismuth and its direct yield wasalso determined. A two-stage anode refining method was established. The firststage. was to remove most part of lead (about 90%) at higher current density ;the second stage was used for removing silver and the remains of lead at lowercurrent density. Under appropriate conditions high purity (WPb < 0.001%,WAd<0.004%) of bismuth could be obtained from crude bismuth with the direct yield of bismuth up to 98%.
文摘SrBi4Ti4O15 powder was synthesized by conventional solid state synthesis ( CS ) and molten salt synthesis ( MSS ) . MSS method can synthesize plate-like SrBi4Ti4O15 at lower temperature (900℃) than CS method. Plate-like form becomes more distinct when the synthesis temperature increases. This would help cause the grain orientation of the ceramics after sintering. The sintered samples of MSS had grain orientation at (0,0, 10) plane. The degree of (0,0,10) grain orientation F was 62.1% . Hot pressing made (0,0,10) grain orientation more distinct ( F = 85.7% ). The microstructures of the sintered samples were detected by SEM. Due to the grain orientation the density of samples fabricated by MSS was lower than that of prepared by CS.