Electrocatalytic CO_(2)reduction reaction(CO_(2)RR),driven by clean electric energy such as solar and wind,can not only alleviate environmental greenhouse effect stemming from excessive CO_(2)emissions,but also realiz...Electrocatalytic CO_(2)reduction reaction(CO_(2)RR),driven by clean electric energy such as solar and wind,can not only alleviate environmental greenhouse effect stemming from excessive CO_(2)emissions,but also realize the storage of renewable energy,for it guarantees the production of value-added chemicals and fuels.Among CO_(2)RR products,formic acid shows great advantages in low energy consumption and high added-value,and thus producing formic acid is generally considered as a profitable line for CO_(2)RR.Bismuth-based electrocatalysts exhibit high formic acid selectivity in CO_(2)RR.Herein,we review the recent progress in bismuth-based electrocatalysts for CO_(2)RR,including material synthesis,performance optimization/validation,and electrolyzers.The effects of morphologies,structure,and composition of bismuth-based electrocatalysts on CO_(2)RR performance are highlighted.Simultaneously,in situ spectroscopic characterization and DFT calculations for reaction mechanism of CO_(2)RR on Bi-based catalysts are emphasized.The applications and optimization of electrolyzers with high current density for CO_(2)RR are summarized.Finally,conclusions and future directions in this field are prospected.展开更多
Electrocatalytic CO_(2) reduction reaction(eCO_(2) RR)has significant relevance to settle the global energy crisis and abnormal climate problem via mitigating the excess emission of waste CO_(2) and producing high-val...Electrocatalytic CO_(2) reduction reaction(eCO_(2) RR)has significant relevance to settle the global energy crisis and abnormal climate problem via mitigating the excess emission of waste CO_(2) and producing high-value-added chemicals.Currently,eCO_(2) RR to formic acid or formate is one of the most technologically and economically viable approaches to realize high-efficiency CO_(2) utilization,and the development of efficient electrocatalysts is very urgent to achieve efficient and stable catalytic performance.In this review,the recent advances for two-dimensional bismuth-based nanosheets(2D Bi-based NSs)electrocatalysts are concluded from both theoretical and experimental perspectives.Firstly,the preparation strategies of 2D Bi-based NSs in aspects to precisely control the thickness and uniformity are summarized.In addition,the electronic regulation strategies of 2D Bi-based NSs are highlighted to gain insight into the effects of the structure-property relationship on facilitating CO_(2) activation,improving product selectivity,and optimizing carrier transport dynamics.Finally,the considerable challenges and opportunities of 2D Bi-based NSs are discussed to lighten new directions for future research of eCO_(2) RR.展开更多
To decipher the mechanism of high temperature superconductivity(SC),it is important to know how the superconducting pairing emerges from the unusual normal states of cuprate superconductors,including pseudogap,anomalo...To decipher the mechanism of high temperature superconductivity(SC),it is important to know how the superconducting pairing emerges from the unusual normal states of cuprate superconductors,including pseudogap,anomalous Fermi liquid and strange metal(SM).A long-standing issue under debate is how the superconducting pairing is formed and condensed in the SM phase because the superconducting transition temperature is the highest in this phase.展开更多
Numerous bismuth-based semiconductors(BBSs)with sophisticated and desirable structures used as photocatalysts for efficient photocatalytic degradation of water organic contaminants have attracted considerable attentio...Numerous bismuth-based semiconductors(BBSs)with sophisticated and desirable structures used as photocatalysts for efficient photocatalytic degradation of water organic contaminants have attracted considerable attention.However,regulating the crystal phases and phase transition of BBSs for promoted photocatalytic performance is ignored.Herein,the unique crystal structure and band structure features of each typical BBSs,and the vital roles on phase controlling of each phase were systematically presented based on the classification of BBSs.Notably,the critical factors for the phase transition of BBSs and intrinsic driving forces endowed by phases of BBSs for enhanced photocatalytic performance of organic contaminants removal were also elucidated.This review will provide systematical guidelines and horizons for regulating the crystal phase and phase transition of BBSs,promoting photocatalytic degradation and mineralization of organic contaminants.展开更多
Metal halide perovskite(MHP)has become one of the most promising materials for photocatalytic CO_(2) reduction owing to the wide light absorption range,negative conduction band position and high reduction ability.Howe...Metal halide perovskite(MHP)has become one of the most promising materials for photocatalytic CO_(2) reduction owing to the wide light absorption range,negative conduction band position and high reduction ability.However,photoreduction of CO_(2) by MHP remains a challenge because of the slow charge separation and transfer.Herein,a cobalt single-atom modified nitrogen-doped graphene(Co-NG)cocatalyst is prepared for enhanced photocatalytic CO_(2) reduction of bismuth-based MHP Cs_(3)Bi_(2)Br_(9).The optimal Cs_(3)Bi_(2)Br_(9)/Co-NG composite exhibits the CO production rate of 123.16μmol g^(-1)h^(-1),which is 17.3 times higher than that of Cs_(3)Bi_(2)Br_(9).Moreover,the Cs_(3)Bi_(2)Br_(9)/Co-NG composite photocatalyst exhibits nearly 100% CO selectivity as well as impressive long-term stability.Charge carrier dynamic characterizations such as Kelvin probe force microscopy(KPFM),single-particle PL microscope and transient absorption(TA)spectroscopy demonstrate the vital role of Co-NG cocatalyst in accelerating the transfer and separation of photogenerated charges and improving photocatalytic performance.The reaction mechanism has been demonstrated by in situ diffuse reflectance infrared Fourier-transform spectroscopy measurement.In addition,in situ X-ray photoelectron spectroscopy test and theoretical calculation reveal the reaction reactive sites and reaction energy barriers,demonstrating that the introduction of Co-NG promotes the formation of ^(*)COOH intermediate,providing sufficient evidence for the highly selective generation of CO.This work provides an effective single-atom-based cocatalyst modification strategy for photocatalytic CO_(2) reduction and is expected to shed light on other photocatalytic applications.展开更多
The artificial neural networks (ANN) which have broad application were proposed to develop multiphase ceramie cutting tool materials. Based on the back propagation algorithm of the forward multilayer perceptron, the m...The artificial neural networks (ANN) which have broad application were proposed to develop multiphase ceramie cutting tool materials. Based on the back propagation algorithm of the forward multilayer perceptron, the models to predict volume content of composition in particie reinforced ceramies are established. The Al2O3/TiN ceramie cutting tool material was developed by ANN, whose mechanicai properties fully satisfy the cutting requirements.展开更多
Photocatalysis has been expected to be a promising advanced oxidation process to endlessly convert exhaustless solar energy into storable,transportable,and usable chemical energy.As a kind of visible light-response se...Photocatalysis has been expected to be a promising advanced oxidation process to endlessly convert exhaustless solar energy into storable,transportable,and usable chemical energy.As a kind of visible light-response semiconductors,Bi-based semiconductors can be developed into step-scheme(S-scheme)heterojunction photocatalysts,consisting of a reductive photocatalyst(RP)and an oxidative photocatalyst(OP)with band edge bending.This review sums up the state-of-the-art progress in Bi-based S-scheme heterojunctions,as well as the in-/ex-situ experiments and theoretical calculations to uncover the unique heterostructure and charge transfer mechanism of Bi-based S-scheme heterojunctions in depth.We can find that Bi-based S-scheme heterojunction photocatalysts have advantages in impeding the recombination of photo-induced electron-hole pairs,expediting the charge transfer,broadening solar energy utilization,and maximizing the potential energy of photo-redox reaction sites.Additionally,the recently published work on the potential applications of Bi-based S-scheme heterojunctions is also summarized,including photocatalytic H_(2) production,CO_(2) reduction with water,pollutant degradation,H_(2)O_(2) production,and N_(2) photofixation for ammonia and urea production by comparing and discussing their photocatalytic efficiency.On the basis of research progress,the immediate challenges and future perspectives of Bi-based S-scheme heterojunction photocatalysts are critically debated.展开更多
基金This work was financially supported by grants from the National Key Research and Development Program of China(2021YFA1501504)Natural Science Foundation of China(22172135,22288102,92045302,and 22021001).
文摘Electrocatalytic CO_(2)reduction reaction(CO_(2)RR),driven by clean electric energy such as solar and wind,can not only alleviate environmental greenhouse effect stemming from excessive CO_(2)emissions,but also realize the storage of renewable energy,for it guarantees the production of value-added chemicals and fuels.Among CO_(2)RR products,formic acid shows great advantages in low energy consumption and high added-value,and thus producing formic acid is generally considered as a profitable line for CO_(2)RR.Bismuth-based electrocatalysts exhibit high formic acid selectivity in CO_(2)RR.Herein,we review the recent progress in bismuth-based electrocatalysts for CO_(2)RR,including material synthesis,performance optimization/validation,and electrolyzers.The effects of morphologies,structure,and composition of bismuth-based electrocatalysts on CO_(2)RR performance are highlighted.Simultaneously,in situ spectroscopic characterization and DFT calculations for reaction mechanism of CO_(2)RR on Bi-based catalysts are emphasized.The applications and optimization of electrolyzers with high current density for CO_(2)RR are summarized.Finally,conclusions and future directions in this field are prospected.
基金supported by the Hainan Provincial Natural Science Foundation of China(222RC548)the National Natural Science Foun-dation of China(22109034,22109035,52164028,62105083,21805104)+3 种基金the Opening Project of Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province(KFKT2021007)the Start-up Research Foundation of Hainan University(KYQD(ZR)-20008,20082,20083,20084,21065,21124,21125)the Innovative Research Projects for Graduate Students of Hainan Province(Qhyb2022-89,Qhys2022-174)the State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China and the Specific Research Fund of the Innovation Platform for Academicians of Hainan Province.
文摘Electrocatalytic CO_(2) reduction reaction(eCO_(2) RR)has significant relevance to settle the global energy crisis and abnormal climate problem via mitigating the excess emission of waste CO_(2) and producing high-value-added chemicals.Currently,eCO_(2) RR to formic acid or formate is one of the most technologically and economically viable approaches to realize high-efficiency CO_(2) utilization,and the development of efficient electrocatalysts is very urgent to achieve efficient and stable catalytic performance.In this review,the recent advances for two-dimensional bismuth-based nanosheets(2D Bi-based NSs)electrocatalysts are concluded from both theoretical and experimental perspectives.Firstly,the preparation strategies of 2D Bi-based NSs in aspects to precisely control the thickness and uniformity are summarized.In addition,the electronic regulation strategies of 2D Bi-based NSs are highlighted to gain insight into the effects of the structure-property relationship on facilitating CO_(2) activation,improving product selectivity,and optimizing carrier transport dynamics.Finally,the considerable challenges and opportunities of 2D Bi-based NSs are discussed to lighten new directions for future research of eCO_(2) RR.
文摘To decipher the mechanism of high temperature superconductivity(SC),it is important to know how the superconducting pairing emerges from the unusual normal states of cuprate superconductors,including pseudogap,anomalous Fermi liquid and strange metal(SM).A long-standing issue under debate is how the superconducting pairing is formed and condensed in the SM phase because the superconducting transition temperature is the highest in this phase.
基金supported by the National Science Foundation of China(22306018,22136002,22302114)Natural Science Foundation of Hunan Province(2023JJ30074)+3 种基金National Key Research and Development Project of China(2020YFA0710304)Special Fund Project of Jiangsu Province for Scientific and Technological Innovation in Carbon Peaking and Carbon Neutrality(BK20220023)Changsha UniversityTsinghua University。
文摘Numerous bismuth-based semiconductors(BBSs)with sophisticated and desirable structures used as photocatalysts for efficient photocatalytic degradation of water organic contaminants have attracted considerable attention.However,regulating the crystal phases and phase transition of BBSs for promoted photocatalytic performance is ignored.Herein,the unique crystal structure and band structure features of each typical BBSs,and the vital roles on phase controlling of each phase were systematically presented based on the classification of BBSs.Notably,the critical factors for the phase transition of BBSs and intrinsic driving forces endowed by phases of BBSs for enhanced photocatalytic performance of organic contaminants removal were also elucidated.This review will provide systematical guidelines and horizons for regulating the crystal phase and phase transition of BBSs,promoting photocatalytic degradation and mineralization of organic contaminants.
文摘Metal halide perovskite(MHP)has become one of the most promising materials for photocatalytic CO_(2) reduction owing to the wide light absorption range,negative conduction band position and high reduction ability.However,photoreduction of CO_(2) by MHP remains a challenge because of the slow charge separation and transfer.Herein,a cobalt single-atom modified nitrogen-doped graphene(Co-NG)cocatalyst is prepared for enhanced photocatalytic CO_(2) reduction of bismuth-based MHP Cs_(3)Bi_(2)Br_(9).The optimal Cs_(3)Bi_(2)Br_(9)/Co-NG composite exhibits the CO production rate of 123.16μmol g^(-1)h^(-1),which is 17.3 times higher than that of Cs_(3)Bi_(2)Br_(9).Moreover,the Cs_(3)Bi_(2)Br_(9)/Co-NG composite photocatalyst exhibits nearly 100% CO selectivity as well as impressive long-term stability.Charge carrier dynamic characterizations such as Kelvin probe force microscopy(KPFM),single-particle PL microscope and transient absorption(TA)spectroscopy demonstrate the vital role of Co-NG cocatalyst in accelerating the transfer and separation of photogenerated charges and improving photocatalytic performance.The reaction mechanism has been demonstrated by in situ diffuse reflectance infrared Fourier-transform spectroscopy measurement.In addition,in situ X-ray photoelectron spectroscopy test and theoretical calculation reveal the reaction reactive sites and reaction energy barriers,demonstrating that the introduction of Co-NG promotes the formation of ^(*)COOH intermediate,providing sufficient evidence for the highly selective generation of CO.This work provides an effective single-atom-based cocatalyst modification strategy for photocatalytic CO_(2) reduction and is expected to shed light on other photocatalytic applications.
文摘The artificial neural networks (ANN) which have broad application were proposed to develop multiphase ceramie cutting tool materials. Based on the back propagation algorithm of the forward multilayer perceptron, the models to predict volume content of composition in particie reinforced ceramies are established. The Al2O3/TiN ceramie cutting tool material was developed by ANN, whose mechanicai properties fully satisfy the cutting requirements.
基金jointly supported by the Fundamental Research Funds for Zhejiang Provincial Universities and Research Institutes(grant no.2022J002)Natural Science Foundation of Zhejiang Province(grant nos.LY20E080014 and TGN23E080003)+1 种基金the National Natural Science Foundation of China(grant no.51708504)the Science and Technology Project of Zhoushan(grant no.2022C41011).
文摘Photocatalysis has been expected to be a promising advanced oxidation process to endlessly convert exhaustless solar energy into storable,transportable,and usable chemical energy.As a kind of visible light-response semiconductors,Bi-based semiconductors can be developed into step-scheme(S-scheme)heterojunction photocatalysts,consisting of a reductive photocatalyst(RP)and an oxidative photocatalyst(OP)with band edge bending.This review sums up the state-of-the-art progress in Bi-based S-scheme heterojunctions,as well as the in-/ex-situ experiments and theoretical calculations to uncover the unique heterostructure and charge transfer mechanism of Bi-based S-scheme heterojunctions in depth.We can find that Bi-based S-scheme heterojunction photocatalysts have advantages in impeding the recombination of photo-induced electron-hole pairs,expediting the charge transfer,broadening solar energy utilization,and maximizing the potential energy of photo-redox reaction sites.Additionally,the recently published work on the potential applications of Bi-based S-scheme heterojunctions is also summarized,including photocatalytic H_(2) production,CO_(2) reduction with water,pollutant degradation,H_(2)O_(2) production,and N_(2) photofixation for ammonia and urea production by comparing and discussing their photocatalytic efficiency.On the basis of research progress,the immediate challenges and future perspectives of Bi-based S-scheme heterojunction photocatalysts are critically debated.