Effects of initial pH, temperature, liquid volume, rotation speed, galvanic interaction (pyrite ratio) and pulp density on bioleaching of complex Cu-polymetallic concentrate were investigated. The results indicated ...Effects of initial pH, temperature, liquid volume, rotation speed, galvanic interaction (pyrite ratio) and pulp density on bioleaching of complex Cu-polymetallic concentrate were investigated. The results indicated that the copper extraction at pH 1.5 was 1.5 and 1.4 times that at pH 1.0 and pH 2.0 respectively. The copper extraction obtained at 45 ℃ was 1236.8%higher than that at 50 ℃. With the increase of rotation speed or the decrease of liquid volume, copper extraction was improved obviously. Copper extraction was improved gradually with the increase of pyrite ratio. However, when the ratio was higher than 20.0%, no further increase in copper extraction was observed. And the statistically significant interactive effects on copper extraction were found between temperature and pH, and temperature and pyrite ratio.展开更多
Microwave assisted leaching of complex copper sulphide concentrate with ferric chloride was investigated, and its mechanism was analyzed. The results show that the leaching rate by microwave irradiation heating is mu...Microwave assisted leaching of complex copper sulphide concentrate with ferric chloride was investigated, and its mechanism was analyzed. The results show that the leaching rate by microwave irradiation heating is much faster than that by conventional heating.展开更多
The leaching behavior of a copper flotation concentrate was investigated using ammonium persulfate (APS) in an autoclave systee. The decomposition products of APS, active oxygen, and acidic medium were used to extra...The leaching behavior of a copper flotation concentrate was investigated using ammonium persulfate (APS) in an autoclave systee. The decomposition products of APS, active oxygen, and acidic medium were used to extract metals from the concentrate. Leaching experiments were performed to compare the availability of APS as an oxidizing agent for leaching of the concentrate under atmospheric conditions and in an autoclave system. Leaching temperature and APS concentration were found to be important parameters in both leaching systems. Atmospheric leaching studies showed that the metal extractions increased with the increase in APS concentration and temperature (up to 333 K). A similar tendency was determined in the autoclave studies up to 423 K. It was also determined that the metal extractions decreased at temperatures above 423 K due to the passivation of the particle surface by molten elemental sulfur. The results showed that higher copper extractions could be achieved using an autoclave system.展开更多
Mixed mesophilic and extreme thermophilic bioleaching were evaluated to remove copper from the molybdenite concentrate.Bioleaching tests were carried out in shake flasks and in a 50-L bioreactor.The shake flask tests ...Mixed mesophilic and extreme thermophilic bioleaching were evaluated to remove copper from the molybdenite concentrate.Bioleaching tests were carried out in shake flasks and in a 50-L bioreactor.The shake flask tests were performed with different inoculum size,solids density,pH.and temperature in order to identify optimum conditions.The highest amount of copper elimination,75%was obtained with extreme thermophilic microorganisms(at 12%inoculation,10%solids,65℃and a pH of 1.5).The highest copper elimination by mesophilic microorganisms was 55%(at 12%inoculation,5%solids,30℃at pH 2).The optimum conditions in shake flask tests were applied to 7 days batch tests in a50-L bioreactor.Extreme thermophilic experiment gave the best copper elimination of 60%(at 12%inoculation,10%solids,65℃and pH 1.5).Mesophilic test removed 50%of the copper(at 12%inoculation,10%solids,35℃at pH 2).展开更多
The removal of molybdenum from a copper ore concentrate by sodium hypochlorite leaching was investigated. The results show that leaching time,liquid to solid ratio,leaching temperature,agitation speed,and sodium hypoc...The removal of molybdenum from a copper ore concentrate by sodium hypochlorite leaching was investigated. The results show that leaching time,liquid to solid ratio,leaching temperature,agitation speed,and sodium hypochlorite and sodium hydroxide concentrations all have a significant effect on the removal of molybdenum.The optimum process operating parameters were found to be:time,4 h;sodium hydroxide concentration,10%;sodium hypochlorite concentration,8%;liquid to solid ratio,10:1;temperature,50℃;and, agitation speed,500 r/min.Under these conditions the extraction of molybdenum is greater than 99,9%and the extraction of copper is less than 0.01%.A shrinking particle model could be used to describe the leaching process.The apparent activation energy of the dissolution reaction was found to be approximately 8.8 kJ/mol.展开更多
The removal of metallic impurities from off-grade copper concentrate was investigated in alkaline solution with H2O2. The analysis results of XRD and SEM-EDS revealed the oxidative mechanisms of all sulfides. The infl...The removal of metallic impurities from off-grade copper concentrate was investigated in alkaline solution with H2O2. The analysis results of XRD and SEM-EDS revealed the oxidative mechanisms of all sulfides. The influence of various parameters of alkaline leaching were investigated including concentrations of sodium hydroxide and hydrogen peroxide, liquid to solid ratio, leaching time and temperature. The results showed that the removal rate of Mo, As and Zn were increased with increasing leaching time and H2O2 concentration, and that the removal rate of Mo, As and Zn were firstly increased and then slightly decreased with increasing liquid to solid ratio, temperature and NaOH concentration, respectively. More than 95% Mo, 94% As, and 94 % Zn are removed from the off-grade concentrate under the optimum conditions, while only 1.7% Cu is dissolved. These optimum conditions were sodium hydroxide 1.5 mol/L, hydrogen peroxide 1.0 mol/L, temperature 50°C, liquid to solid ratio 5/1 mL/g and leaching time 5 h.展开更多
The effects of ferrous and ferric iron as well as redox potential on copper and iron extraction from the copper flotation concentrate of Sarcheshmeh, Kerman, Iran, were evaluated using shake flask leaching examination...The effects of ferrous and ferric iron as well as redox potential on copper and iron extraction from the copper flotation concentrate of Sarcheshmeh, Kerman, Iran, were evaluated using shake flask leaching examinations. Experiments were carried out in the presence and absence of a mixed culture of moderately thermophile microorganisms at 50?C. Chemical leaching experiments were performed in the absence and presence of 0.15 M iron (ferric added medium, ferrous added medium and a mixture medium regulated at 420 mV, Pt. vs. Ag/AgCl). In addition, bioleaching experiments were carried out in the presence and absence of 0.1 M iron (ferric and ferrous added mediua) at pulp density 10% (w/v), inoculated bacteria 20% (v/v), initial pH 1.6, nutrient medium Norris and yeast extract addition 0.02% (w/w). Abiotic leaching tests showed that the addition of iron at low solution redox potentials significantly increased the rate and extent of copper dissolution but when ferric iron was added, despite a higher initial rate of copper dissolution, leaching process stopped. Addition of both ferrous and ferric iron to the bioleaching medium levelled off the copper extraction and had an inhibitory effect which decreased the final redox potential. The monitoring of ferrous iron, ferric iron and copper extraction in leach solutions gave helpful results to understand the behaviour of iron cations during chemical and bacterial leaching processes.展开更多
The effect of reagents used in separating chalcopyrite from pyrite on the cake moisture of the copper concentrate at Daye Iron Mine Mineral Processing Plant was investigated. The results showed that the dosage of lime...The effect of reagents used in separating chalcopyrite from pyrite on the cake moisture of the copper concentrate at Daye Iron Mine Mineral Processing Plant was investigated. The results showed that the dosage of lime used for depressing pyrite was the main factor that increased the filter cake moisture of copper concentrate. With increasing the dosage of lime, the cake moisture of copper concentrate increased sharply. The cause was concluded to be the addition of lime to the pulp, which resulted in the formation of floc and a high pH value. The collector Z-200#, used for collecting chalcopyrite, had, as well, an adverse effect on the cake moisture of copper concentrate, but its effect was inferior in respect to that of lime. The cake moisture of copper concentrate can be decreased by changing the method with which lime is added and the pH value of pulp is regulated. The experiment results showed that the sulfuric acid was the best regulator. When the clarified liquor of lime was used as a depressant and the pH value of the pulp was regulated to 6.5€*7.0 by adding sulfuric acid, the cake moisture of copper concentrate was reduced from 15.49% to 13.13%. The examination of chalcopyrite surface by using ESCA (Electron Spectroscopy for Chemical Analysis) showed that calcium sulfate and iron hydroxide had formed on the surface of chalcopyrite when lime was added to the pulp. The formation of calcium sulfate and iron hydroxide on its surface increased the hydrophilicity of chalcopyrite so that its cake moisture increased. The addition of sulfuric acid to the pulp not only removed the calcium sulfate, but also reduced the concentration of iron hydroxide on the surface of chalcopyrite so that the cake moisture of copper concentrate was decreased.展开更多
Sulfation roasting was studied to extract copper from the copper sulfide concentrate. Sodium sulfite was added as sulfation agent to the copper sulfide concentrate during roasting in this study. Sulfur removal rate at...Sulfation roasting was studied to extract copper from the copper sulfide concentrate. Sodium sulfite was added as sulfation agent to the copper sulfide concentrate during roasting in this study. Sulfur removal rate at different roasting temperatures was investigated, and the effects of roasting temperature, roasting time, and the amount of sodium sulfite on copper extraction were studied. Copper extraction higher than 96% was achieved at optimum roasting conditions.展开更多
In Argentina, there are many sources of copper concentrates. Some of them are currently in operation, while others are in the exploration stage. All copper concentrates produced are exported to other countries for cop...In Argentina, there are many sources of copper concentrates. Some of them are currently in operation, while others are in the exploration stage. All copper concentrates produced are exported to other countries for copper refinement and to create various finished products. It is desirable that in the near future, these copper concentrates be processed in an Argentinean industrial plant. The aim of this paper was to present the results of a characterisation study carried out on five different copper concentrate samples. The thermal decomposition of the copper concentrates was determined by differential thermal analysis and thermogravimetry (DTA TG). The information was correlated with the chemical composition and the mineralogical phases of the samples identified by X-ray diffraction. A melting test at temperatures of up to 1300℃ was performed to complete the study of the concentrate’s behaviour during heating. After the test, all of the samples were observed by light and electronic scanning microscopy to identify the different phases generated under high-temperature conditions.展开更多
Multiplicity of the chemical, biological, electrochemical and operational variables and nonlinear behavior of metal extraction in bioleaching environments complicate the mathematical modeling of these systems. This re...Multiplicity of the chemical, biological, electrochemical and operational variables and nonlinear behavior of metal extraction in bioleaching environments complicate the mathematical modeling of these systems. This research was done to predict copper and iron recovery from a copper flotation concentrate in a stirred tank bioreactor using a fuzzy logic model. Experiments were carried out in the presence of a mixed culture of mesophilic bacteria at 35° C, and a mixed culture of moderately thermophilic bacteria at 50° C. Input variables were method of operation (bioleaching or electrobioleaching), the type of bacteria and time (day), while the recoveries of copper and iron were the outputs. A relationship was developed between stated inputs and the outputs by means of “if-then” rules. The resulting fuzzy model showed a satisfactory prediction of the copper and iron extraction and had a good correlation of experimental data with R-squared more than 0.97. The results of this study suggested that fuzzy logic provided a powerful and reliable tool for predicting the nonlinear and time variant bioleaching processes.展开更多
This study presents a special problem on vertical distribution for sediment and copper in hyper-concentrated turbulent solid-liquid system that is essentially different from the ordinary low-concentrated turbulent sys...This study presents a special problem on vertical distribution for sediment and copper in hyper-concentrated turbulent solid-liquid system that is essentially different from the ordinary low-concentrated turbulent system. A resonance type turbulent simulation equipment is used for the experimental study in which a vertically uniform turbulent field of the mixture of loess and water is produced in a testing cylinder with a grille stirrer that moves up and down harmoniously with varying vibration frequencies, in order to compare the variations of the vertical profiles of sediment and copper in low- and hyper-concentratod solid-liquid system, different scenarios for input sediment content ranging from 5 to 800 kg/m^3 was considered in the experimental studies. It was found that solids copper content increases with input sediment content, So, and reaches its peak as So goes to 10 kg/m^3 and then decreases rapidly with increasing input sediment content. Such a behavior is possibly resulted from the joint effect of the specific adsorption of copper on loess, precipitation of carbonate and hydroxide of copper due to high carbonate content in the loess and the so-called "particulate concentration effect" due to the present of the sediment variation in water. The vertical sediment concentration distribution resulted from the uniform turbulence is generally uniform, but slight non-uniformity does occur as sediment concentration exceeds certain value. However, the vertical concentration distributions of soluble copper seem not to be affected much by the variation of sediment concentrations.展开更多
Austenite antibacterial stainless steels have been found to have wide applications in hospitals and food industries. In recent years epsilon copper precipitation in antibacterial stainless steels has obtained much res...Austenite antibacterial stainless steels have been found to have wide applications in hospitals and food industries. In recent years epsilon copper precipitation in antibacterial stainless steels has obtained much research interest due to its antibacterial action. The objective of this study was to determine the effects of nitrogen concentration on the precipitation of epsilon copper and antibacterial property. Two kinds of austenite antibacterial stainless steels containing copper and different nitrogen concentration (0.02 and 0.08 wt pct, respectively) were prepared and the microstructures were characterized by a combination of electron microscopy and thermodynamic analysis. A mathematical expression was deduced to predict the effect of nitrogen concentration on the activity coefficient of copper, In(fCu/f^0cu)=0.53524+4.11xN-0.48x^2N. Higher nitrogen was found to increase the free energy difference of copper concentration distribution between precipitation phase and austenite matrix, stimulate the aggregation of copper atoms from austenite, increase the precipitation amount and consequently enhance the antibacterial property of steel.展开更多
The application of the response surface methodology and the central composite design(CCD) technique for modeling and optimization of the influence of some operating variables on copper,molybdenum and rhenium recover...The application of the response surface methodology and the central composite design(CCD) technique for modeling and optimization of the influence of some operating variables on copper,molybdenum and rhenium recoveries in a bioleaching process was investigated.Three main bioleaching parameters,namely pH,solid concentration and inoculum percent,were changed during the bioleaching tests based on CCD.The ranges of the bioleaching process variables used in the design were as follows:pH1.46-2.14,solid concentration 0.95%-11.05%,and inoculum percent 1.59%-18.41%.A total of 20 bioleaching tests were carried out by the CCD method according to software-based designed matrix.Empirical model equations were developed according to the copper,molybdenum and rhenium recoveries obtained with these three parameters.Model equations of responses at the base of parameters were achieved by using statistical software.The model equations were then individually optimized by using quadratic programming to maximize copper,molybdenum and rhenium recoveries individually within the experimental range.The optimum conditions for copper recovery were pH 1.68,solid concentration 0.95% and the inoculum 18.41%(v/v),while molybdenum and rhenium recoveries were 2.18% and 24.41%,respectively.The predicted values for copper,molybdenum and rhenium recoveries were found to be in good agreement with the experimental values.Also jarosite formation during bioleaching tests was also investigated.展开更多
Superoxide dismutase(SOD) is a crucial antioxidant enzyme playing the first defense line in antioxidant pathways against reactive oxygen species in various organisms including marine invertebrates. There exist mainl...Superoxide dismutase(SOD) is a crucial antioxidant enzyme playing the first defense line in antioxidant pathways against reactive oxygen species in various organisms including marine invertebrates. There exist mainly two specific forms, Cu/Zn-SOD(SOD1) and Mn-SOD(SOD2), in eukaryotes. SODs are known to be concurrently modulated by a variety of environmental stressors. By using central composite experimental design and response surface method, the joint effects of water temperature(18–34°C) and copper ion concentration(0.1–1.5 mg/L) on the total SOD activity in the digestive gland of Crassostrea ariakensis were studied. The results showed that the linear effect of temperature was highly significant(P〈0.01), the quadratic effect of temperature was significant(P〈0.05); the linear effect of copper ion concentration was not significant(P〉0.05), while the quadratic effect of copper ion concentration was highly significant(P〈0.01); the interactive effect of temperature and copper ion concentration was not significant(P〉0.05); the effect of temperature was greater than that of copper ion concentration. The model equation of digestive gland SOD enzyme activity towards the two factors of interest was established, with R2 and predictive R2 as high as 0.961 6 and 0.820 7, respectively, suggesting that the goodness-offit to experimental data be very satisfactory, and could be applied to prediction of digestive gland SOD activity in C. ariakensis under the conditions of the experiment. Our results would be conducive to addressing the health of aquatic animals and/or to detecting environmental problems by taking SOD as a potential bioindicator.展开更多
Copper complexing ligand concentrations in the Daya Bay, Qingdao coast, Jiaozhou Bay, South China Sea and Huanghe Estuary waters were determined by the anodic stripping voltammetry technique. The distribution regulari...Copper complexing ligand concentrations in the Daya Bay, Qingdao coast, Jiaozhou Bay, South China Sea and Huanghe Estuary waters were determined by the anodic stripping voltammetry technique. The distribution regularity and the relationship with other parameters were discussed. The results were as follows: Copper complexing ligand concentrations of the South China Sea were a little higher than those of other sea areas, and they were apparently higher than those of the ocean. Compared with the subsurface layer (SSL) in the sea surface microlayer copper complexing ligand concentrations showed an enrichment phenomenon, of which the mechanism is similar to dissolved organic matter. The metal complexing ligand concentration profiles of the South China Sea showed that the value in the sea surface was the highest, then it decreased with depth accruing, and a higher value appeared at the bottom. Copper complex- ing ligand concentrations were higher than those of cadmium and lead. Ligands in each sea area exhibited a complicated property. In short, the distribution regularity of copper complexing ligand concentrations in China's coastal waters was consistent with that of other regions in the world. Meanwhile, the positive relationship between the copper complexing ligand concentrations and biological oxygen demand, chemical oxygen demand, dissolved organic carbon, and viscosity were found clearly.展开更多
A central composite experimental design and response surface method were used to investigate the combined effects of water temperature(18–34℃) and copper ion concentration(0.1–1.5 mg/L) on the catalase(CAT) activit...A central composite experimental design and response surface method were used to investigate the combined effects of water temperature(18–34℃) and copper ion concentration(0.1–1.5 mg/L) on the catalase(CAT) activity in the digestive gland of C rassostrea ariakensis. The results showed that the linear effects of temperature were significant(P <0.01), the quadratic effects of temperature were significant( P <0.05), the linear effects of copper ion concentration were not significant(P >0.05), and the quadratic effects of copper ion concentration were significant(P <0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant(P >0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.展开更多
The influences of temperature, H2SO4 concentration, CuSO4 concentration, reaction time and SO2 flow rate on the reduction of arsenic(V) with SO2 were studied and the deposition behavior of arsenic (III) under the ...The influences of temperature, H2SO4 concentration, CuSO4 concentration, reaction time and SO2 flow rate on the reduction of arsenic(V) with SO2 were studied and the deposition behavior of arsenic (III) under the effect of concentration and co-crystallization was investigated in copper electrolyte. The results indicate that reduction rate of arsenic (V) decreases with increasing temperature and H2SO4 concentration, but increases with increasing SO2 flow rate and reaction time, and it can reach 92% under appropriate conditions that reaction temperature is 65 °C, H2SO4 concentration is 203 g/L, CuSO4 concentration is 80 g/L, reaction time is 2 h and SO2 gas flow rate is 200 mL/min. To remove arsenic in the copper electrolyte, arsenic (V) is reduced to trivalence under the appropriate conditions, the copper electrolyte is concentrated till H2SO4 concentration reaches 645 g/L, and then the removal rates of As, Cu, Sb and Bi reach 83.9%, 87.1%, 21.0% and 84.7%. The XRD analysis shows that crystallized product obtained contains As2O3 and CuSO4·5H2O.展开更多
基金Project (2012zzts026) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (201205020) supported by Scientific Research Program of Marine Public Welfare Industry of China+2 种基金Project (51074195) supported by the National Natural Science Foundation of ChinaProject (CX2012B123) supported by Research Innovation for Graduate Student of Hunan Province,ChinaProject (12C517) supported by Education Department of Hunan Province,China
文摘Effects of initial pH, temperature, liquid volume, rotation speed, galvanic interaction (pyrite ratio) and pulp density on bioleaching of complex Cu-polymetallic concentrate were investigated. The results indicated that the copper extraction at pH 1.5 was 1.5 and 1.4 times that at pH 1.0 and pH 2.0 respectively. The copper extraction obtained at 45 ℃ was 1236.8%higher than that at 50 ℃. With the increase of rotation speed or the decrease of liquid volume, copper extraction was improved obviously. Copper extraction was improved gradually with the increase of pyrite ratio. However, when the ratio was higher than 20.0%, no further increase in copper extraction was observed. And the statistically significant interactive effects on copper extraction were found between temperature and pH, and temperature and pyrite ratio.
文摘Microwave assisted leaching of complex copper sulphide concentrate with ferric chloride was investigated, and its mechanism was analyzed. The results show that the leaching rate by microwave irradiation heating is much faster than that by conventional heating.
基金financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK,No.106M177)
文摘The leaching behavior of a copper flotation concentrate was investigated using ammonium persulfate (APS) in an autoclave systee. The decomposition products of APS, active oxygen, and acidic medium were used to extract metals from the concentrate. Leaching experiments were performed to compare the availability of APS as an oxidizing agent for leaching of the concentrate under atmospheric conditions and in an autoclave system. Leaching temperature and APS concentration were found to be important parameters in both leaching systems. Atmospheric leaching studies showed that the metal extractions increased with the increase in APS concentration and temperature (up to 333 K). A similar tendency was determined in the autoclave studies up to 423 K. It was also determined that the metal extractions decreased at temperatures above 423 K due to the passivation of the particle surface by molten elemental sulfur. The results showed that higher copper extractions could be achieved using an autoclave system.
基金supported by the National Iranian Copper Industry Co.
文摘Mixed mesophilic and extreme thermophilic bioleaching were evaluated to remove copper from the molybdenite concentrate.Bioleaching tests were carried out in shake flasks and in a 50-L bioreactor.The shake flask tests were performed with different inoculum size,solids density,pH.and temperature in order to identify optimum conditions.The highest amount of copper elimination,75%was obtained with extreme thermophilic microorganisms(at 12%inoculation,10%solids,65℃and a pH of 1.5).The highest copper elimination by mesophilic microorganisms was 55%(at 12%inoculation,5%solids,30℃at pH 2).The optimum conditions in shake flask tests were applied to 7 days batch tests in a50-L bioreactor.Extreme thermophilic experiment gave the best copper elimination of 60%(at 12%inoculation,10%solids,65℃and pH 1.5).Mesophilic test removed 50%of the copper(at 12%inoculation,10%solids,35℃at pH 2).
基金the 11th Five-Year Plan of the National Scientific and Technological Program of China(No. 2007BAB22B01)the National Natural Science Foundation of China(No.50704036).
文摘The removal of molybdenum from a copper ore concentrate by sodium hypochlorite leaching was investigated. The results show that leaching time,liquid to solid ratio,leaching temperature,agitation speed,and sodium hypochlorite and sodium hydroxide concentrations all have a significant effect on the removal of molybdenum.The optimum process operating parameters were found to be:time,4 h;sodium hydroxide concentration,10%;sodium hypochlorite concentration,8%;liquid to solid ratio,10:1;temperature,50℃;and, agitation speed,500 r/min.Under these conditions the extraction of molybdenum is greater than 99,9%and the extraction of copper is less than 0.01%.A shrinking particle model could be used to describe the leaching process.The apparent activation energy of the dissolution reaction was found to be approximately 8.8 kJ/mol.
文摘The removal of metallic impurities from off-grade copper concentrate was investigated in alkaline solution with H2O2. The analysis results of XRD and SEM-EDS revealed the oxidative mechanisms of all sulfides. The influence of various parameters of alkaline leaching were investigated including concentrations of sodium hydroxide and hydrogen peroxide, liquid to solid ratio, leaching time and temperature. The results showed that the removal rate of Mo, As and Zn were increased with increasing leaching time and H2O2 concentration, and that the removal rate of Mo, As and Zn were firstly increased and then slightly decreased with increasing liquid to solid ratio, temperature and NaOH concentration, respectively. More than 95% Mo, 94% As, and 94 % Zn are removed from the off-grade concentrate under the optimum conditions, while only 1.7% Cu is dissolved. These optimum conditions were sodium hydroxide 1.5 mol/L, hydrogen peroxide 1.0 mol/L, temperature 50°C, liquid to solid ratio 5/1 mL/g and leaching time 5 h.
文摘The effects of ferrous and ferric iron as well as redox potential on copper and iron extraction from the copper flotation concentrate of Sarcheshmeh, Kerman, Iran, were evaluated using shake flask leaching examinations. Experiments were carried out in the presence and absence of a mixed culture of moderately thermophile microorganisms at 50?C. Chemical leaching experiments were performed in the absence and presence of 0.15 M iron (ferric added medium, ferrous added medium and a mixture medium regulated at 420 mV, Pt. vs. Ag/AgCl). In addition, bioleaching experiments were carried out in the presence and absence of 0.1 M iron (ferric and ferrous added mediua) at pulp density 10% (w/v), inoculated bacteria 20% (v/v), initial pH 1.6, nutrient medium Norris and yeast extract addition 0.02% (w/w). Abiotic leaching tests showed that the addition of iron at low solution redox potentials significantly increased the rate and extent of copper dissolution but when ferric iron was added, despite a higher initial rate of copper dissolution, leaching process stopped. Addition of both ferrous and ferric iron to the bioleaching medium levelled off the copper extraction and had an inhibitory effect which decreased the final redox potential. The monitoring of ferrous iron, ferric iron and copper extraction in leach solutions gave helpful results to understand the behaviour of iron cations during chemical and bacterial leaching processes.
文摘The effect of reagents used in separating chalcopyrite from pyrite on the cake moisture of the copper concentrate at Daye Iron Mine Mineral Processing Plant was investigated. The results showed that the dosage of lime used for depressing pyrite was the main factor that increased the filter cake moisture of copper concentrate. With increasing the dosage of lime, the cake moisture of copper concentrate increased sharply. The cause was concluded to be the addition of lime to the pulp, which resulted in the formation of floc and a high pH value. The collector Z-200#, used for collecting chalcopyrite, had, as well, an adverse effect on the cake moisture of copper concentrate, but its effect was inferior in respect to that of lime. The cake moisture of copper concentrate can be decreased by changing the method with which lime is added and the pH value of pulp is regulated. The experiment results showed that the sulfuric acid was the best regulator. When the clarified liquor of lime was used as a depressant and the pH value of the pulp was regulated to 6.5€*7.0 by adding sulfuric acid, the cake moisture of copper concentrate was reduced from 15.49% to 13.13%. The examination of chalcopyrite surface by using ESCA (Electron Spectroscopy for Chemical Analysis) showed that calcium sulfate and iron hydroxide had formed on the surface of chalcopyrite when lime was added to the pulp. The formation of calcium sulfate and iron hydroxide on its surface increased the hydrophilicity of chalcopyrite so that its cake moisture increased. The addition of sulfuric acid to the pulp not only removed the calcium sulfate, but also reduced the concentration of iron hydroxide on the surface of chalcopyrite so that the cake moisture of copper concentrate was decreased.
文摘Sulfation roasting was studied to extract copper from the copper sulfide concentrate. Sodium sulfite was added as sulfation agent to the copper sulfide concentrate during roasting in this study. Sulfur removal rate at different roasting temperatures was investigated, and the effects of roasting temperature, roasting time, and the amount of sodium sulfite on copper extraction were studied. Copper extraction higher than 96% was achieved at optimum roasting conditions.
文摘In Argentina, there are many sources of copper concentrates. Some of them are currently in operation, while others are in the exploration stage. All copper concentrates produced are exported to other countries for copper refinement and to create various finished products. It is desirable that in the near future, these copper concentrates be processed in an Argentinean industrial plant. The aim of this paper was to present the results of a characterisation study carried out on five different copper concentrate samples. The thermal decomposition of the copper concentrates was determined by differential thermal analysis and thermogravimetry (DTA TG). The information was correlated with the chemical composition and the mineralogical phases of the samples identified by X-ray diffraction. A melting test at temperatures of up to 1300℃ was performed to complete the study of the concentrate’s behaviour during heating. After the test, all of the samples were observed by light and electronic scanning microscopy to identify the different phases generated under high-temperature conditions.
文摘Multiplicity of the chemical, biological, electrochemical and operational variables and nonlinear behavior of metal extraction in bioleaching environments complicate the mathematical modeling of these systems. This research was done to predict copper and iron recovery from a copper flotation concentrate in a stirred tank bioreactor using a fuzzy logic model. Experiments were carried out in the presence of a mixed culture of mesophilic bacteria at 35° C, and a mixed culture of moderately thermophilic bacteria at 50° C. Input variables were method of operation (bioleaching or electrobioleaching), the type of bacteria and time (day), while the recoveries of copper and iron were the outputs. A relationship was developed between stated inputs and the outputs by means of “if-then” rules. The resulting fuzzy model showed a satisfactory prediction of the copper and iron extraction and had a good correlation of experimental data with R-squared more than 0.97. The results of this study suggested that fuzzy logic provided a powerful and reliable tool for predicting the nonlinear and time variant bioleaching processes.
基金Project supported by the National Basic Research Program of China (No. G1999043603).
文摘This study presents a special problem on vertical distribution for sediment and copper in hyper-concentrated turbulent solid-liquid system that is essentially different from the ordinary low-concentrated turbulent system. A resonance type turbulent simulation equipment is used for the experimental study in which a vertically uniform turbulent field of the mixture of loess and water is produced in a testing cylinder with a grille stirrer that moves up and down harmoniously with varying vibration frequencies, in order to compare the variations of the vertical profiles of sediment and copper in low- and hyper-concentratod solid-liquid system, different scenarios for input sediment content ranging from 5 to 800 kg/m^3 was considered in the experimental studies. It was found that solids copper content increases with input sediment content, So, and reaches its peak as So goes to 10 kg/m^3 and then decreases rapidly with increasing input sediment content. Such a behavior is possibly resulted from the joint effect of the specific adsorption of copper on loess, precipitation of carbonate and hydroxide of copper due to high carbonate content in the loess and the so-called "particulate concentration effect" due to the present of the sediment variation in water. The vertical sediment concentration distribution resulted from the uniform turbulence is generally uniform, but slight non-uniformity does occur as sediment concentration exceeds certain value. However, the vertical concentration distributions of soluble copper seem not to be affected much by the variation of sediment concentrations.
文摘Austenite antibacterial stainless steels have been found to have wide applications in hospitals and food industries. In recent years epsilon copper precipitation in antibacterial stainless steels has obtained much research interest due to its antibacterial action. The objective of this study was to determine the effects of nitrogen concentration on the precipitation of epsilon copper and antibacterial property. Two kinds of austenite antibacterial stainless steels containing copper and different nitrogen concentration (0.02 and 0.08 wt pct, respectively) were prepared and the microstructures were characterized by a combination of electron microscopy and thermodynamic analysis. A mathematical expression was deduced to predict the effect of nitrogen concentration on the activity coefficient of copper, In(fCu/f^0cu)=0.53524+4.11xN-0.48x^2N. Higher nitrogen was found to increase the free energy difference of copper concentration distribution between precipitation phase and austenite matrix, stimulate the aggregation of copper atoms from austenite, increase the precipitation amount and consequently enhance the antibacterial property of steel.
基金supported by the National Iranian Copper Industry Co. and Geological Survey of Iran
文摘The application of the response surface methodology and the central composite design(CCD) technique for modeling and optimization of the influence of some operating variables on copper,molybdenum and rhenium recoveries in a bioleaching process was investigated.Three main bioleaching parameters,namely pH,solid concentration and inoculum percent,were changed during the bioleaching tests based on CCD.The ranges of the bioleaching process variables used in the design were as follows:pH1.46-2.14,solid concentration 0.95%-11.05%,and inoculum percent 1.59%-18.41%.A total of 20 bioleaching tests were carried out by the CCD method according to software-based designed matrix.Empirical model equations were developed according to the copper,molybdenum and rhenium recoveries obtained with these three parameters.Model equations of responses at the base of parameters were achieved by using statistical software.The model equations were then individually optimized by using quadratic programming to maximize copper,molybdenum and rhenium recoveries individually within the experimental range.The optimum conditions for copper recovery were pH 1.68,solid concentration 0.95% and the inoculum 18.41%(v/v),while molybdenum and rhenium recoveries were 2.18% and 24.41%,respectively.The predicted values for copper,molybdenum and rhenium recoveries were found to be in good agreement with the experimental values.Also jarosite formation during bioleaching tests was also investigated.
基金The Guangdong Province Education Department under contract No.GCZX-A0909the Guangdong Province Ocean and Fisheries Science & Technology Extension Project under contract No.20120980+1 种基金the Guangdong Province Industry-University-Science Partnership Project under contract No.20110908the Science&Technology Project of Huaiyin Normal University under contract No.WH0031
文摘Superoxide dismutase(SOD) is a crucial antioxidant enzyme playing the first defense line in antioxidant pathways against reactive oxygen species in various organisms including marine invertebrates. There exist mainly two specific forms, Cu/Zn-SOD(SOD1) and Mn-SOD(SOD2), in eukaryotes. SODs are known to be concurrently modulated by a variety of environmental stressors. By using central composite experimental design and response surface method, the joint effects of water temperature(18–34°C) and copper ion concentration(0.1–1.5 mg/L) on the total SOD activity in the digestive gland of Crassostrea ariakensis were studied. The results showed that the linear effect of temperature was highly significant(P〈0.01), the quadratic effect of temperature was significant(P〈0.05); the linear effect of copper ion concentration was not significant(P〉0.05), while the quadratic effect of copper ion concentration was highly significant(P〈0.01); the interactive effect of temperature and copper ion concentration was not significant(P〉0.05); the effect of temperature was greater than that of copper ion concentration. The model equation of digestive gland SOD enzyme activity towards the two factors of interest was established, with R2 and predictive R2 as high as 0.961 6 and 0.820 7, respectively, suggesting that the goodness-offit to experimental data be very satisfactory, and could be applied to prediction of digestive gland SOD activity in C. ariakensis under the conditions of the experiment. Our results would be conducive to addressing the health of aquatic animals and/or to detecting environmental problems by taking SOD as a potential bioindicator.
基金supported by the National"Ninth Five-Year Plan"Scientific Research Project of China under contract No.979260403the National"Tenth Five-Year Plan"Scientific Research Project of China under contract No.2001CB409700+1 种基金the National Natural Science Foundation of China under contract Nos 40076020 and 40376022National Natural Science Special Key Foundation of China under contract No.40490263.
文摘Copper complexing ligand concentrations in the Daya Bay, Qingdao coast, Jiaozhou Bay, South China Sea and Huanghe Estuary waters were determined by the anodic stripping voltammetry technique. The distribution regularity and the relationship with other parameters were discussed. The results were as follows: Copper complexing ligand concentrations of the South China Sea were a little higher than those of other sea areas, and they were apparently higher than those of the ocean. Compared with the subsurface layer (SSL) in the sea surface microlayer copper complexing ligand concentrations showed an enrichment phenomenon, of which the mechanism is similar to dissolved organic matter. The metal complexing ligand concentration profiles of the South China Sea showed that the value in the sea surface was the highest, then it decreased with depth accruing, and a higher value appeared at the bottom. Copper complex- ing ligand concentrations were higher than those of cadmium and lead. Ligands in each sea area exhibited a complicated property. In short, the distribution regularity of copper complexing ligand concentrations in China's coastal waters was consistent with that of other regions in the world. Meanwhile, the positive relationship between the copper complexing ligand concentrations and biological oxygen demand, chemical oxygen demand, dissolved organic carbon, and viscosity were found clearly.
基金Supported by the Guangdong Province Science & Technology Project(No.2010B020201014)the Guangdong Province Education Department(No.GCZX-A0909)+2 种基金the Guangdong Province Ocean and Fisheries Science & Technology Extension Project(No.20120980)the Guangdong Province Industry-University-Science Partnership Project(No.20110908)the Sci & Tech Plan of Huaiyin Normal University(No.00wh0031)
文摘A central composite experimental design and response surface method were used to investigate the combined effects of water temperature(18–34℃) and copper ion concentration(0.1–1.5 mg/L) on the catalase(CAT) activity in the digestive gland of C rassostrea ariakensis. The results showed that the linear effects of temperature were significant(P <0.01), the quadratic effects of temperature were significant( P <0.05), the linear effects of copper ion concentration were not significant(P >0.05), and the quadratic effects of copper ion concentration were significant(P <0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant(P >0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.
文摘The influences of temperature, H2SO4 concentration, CuSO4 concentration, reaction time and SO2 flow rate on the reduction of arsenic(V) with SO2 were studied and the deposition behavior of arsenic (III) under the effect of concentration and co-crystallization was investigated in copper electrolyte. The results indicate that reduction rate of arsenic (V) decreases with increasing temperature and H2SO4 concentration, but increases with increasing SO2 flow rate and reaction time, and it can reach 92% under appropriate conditions that reaction temperature is 65 °C, H2SO4 concentration is 203 g/L, CuSO4 concentration is 80 g/L, reaction time is 2 h and SO2 gas flow rate is 200 mL/min. To remove arsenic in the copper electrolyte, arsenic (V) is reduced to trivalence under the appropriate conditions, the copper electrolyte is concentrated till H2SO4 concentration reaches 645 g/L, and then the removal rates of As, Cu, Sb and Bi reach 83.9%, 87.1%, 21.0% and 84.7%. The XRD analysis shows that crystallized product obtained contains As2O3 and CuSO4·5H2O.