We simulate the polarization manipulation of bright-dark vector bisolitons at 1-µm wavelength regime.Through changing the pulse parameters,different kinds of pulse shapes and optical spectra are generated in outp...We simulate the polarization manipulation of bright-dark vector bisolitons at 1-µm wavelength regime.Through changing the pulse parameters,different kinds of pulse shapes and optical spectra are generated in output orthogonal polarization directions.When the input vector bisoliton is polarization-locked with 1064 nm central wavelength,“1+1”fundamental dark-dark and“2+1”pseudo-high-order bright-dark group-velocity-locked vector solitons can be achieved through changing the projection angle.When the input vector bisoliton is group-velocity-locked with 1063 nm and 1065 nm central wavelengths,“2+1”and“2+2”pseudo-high-order bright-dark group-velocity-locked vector solitons,bright-dark group-velocity-locked vector solitons with chirp-like temporal oscillations are generated.Our simulation results can provide beneficial conduct for polarization manipulation of vector multi-solitons,and have promising applications in quantum information register,optical communications,nanophotonics,and all-optical switching.展开更多
基金Project supported by National Key Research and Development Program of China(Grant No.2018YFB0504500)the National Natural Science Foundation of China(Grant No.51672177)Shanghai Sailing Program(Grant No.20YF1447500).
文摘We simulate the polarization manipulation of bright-dark vector bisolitons at 1-µm wavelength regime.Through changing the pulse parameters,different kinds of pulse shapes and optical spectra are generated in output orthogonal polarization directions.When the input vector bisoliton is polarization-locked with 1064 nm central wavelength,“1+1”fundamental dark-dark and“2+1”pseudo-high-order bright-dark group-velocity-locked vector solitons can be achieved through changing the projection angle.When the input vector bisoliton is group-velocity-locked with 1063 nm and 1065 nm central wavelengths,“2+1”and“2+2”pseudo-high-order bright-dark group-velocity-locked vector solitons,bright-dark group-velocity-locked vector solitons with chirp-like temporal oscillations are generated.Our simulation results can provide beneficial conduct for polarization manipulation of vector multi-solitons,and have promising applications in quantum information register,optical communications,nanophotonics,and all-optical switching.