In this paper, we present a graphics processing unit(GPU)-based implementation of a weighted bit-reliability based(w BRB) decoder for non-binary LDPC(NB-LDPC) codes. To achieve coalesced memory accesses, an efficient ...In this paper, we present a graphics processing unit(GPU)-based implementation of a weighted bit-reliability based(w BRB) decoder for non-binary LDPC(NB-LDPC) codes. To achieve coalesced memory accesses, an efficient data structure for the w BRB algorithm is proposed. Based on the Single-Instruction Multiple-Threads(SIMT) programming model, a novel mapping strategy with high intra-frame parallelism is presented to improve the latency and throughput performance. Moreover, by using Single-Instruction Multiple-Data(SIMD) intrinsics, four 8-bit message elements are packed into a 32-bit unit and simultaneously processed. Experimental results show that the proposed w BRB decoder provides good tradeoff between error performance and throughput for the codes with relatively large column degrees or high rates.展开更多
基金the National Natural Science Foundation of China (91438116)
文摘In this paper, we present a graphics processing unit(GPU)-based implementation of a weighted bit-reliability based(w BRB) decoder for non-binary LDPC(NB-LDPC) codes. To achieve coalesced memory accesses, an efficient data structure for the w BRB algorithm is proposed. Based on the Single-Instruction Multiple-Threads(SIMT) programming model, a novel mapping strategy with high intra-frame parallelism is presented to improve the latency and throughput performance. Moreover, by using Single-Instruction Multiple-Data(SIMD) intrinsics, four 8-bit message elements are packed into a 32-bit unit and simultaneously processed. Experimental results show that the proposed w BRB decoder provides good tradeoff between error performance and throughput for the codes with relatively large column degrees or high rates.