Previously,a single data-path stack was adequate for data-path chips,and the complexity and size of the data-path was comparatively small.As current data-path chips,such as system-on-a-chip (SOC),become more complex,m...Previously,a single data-path stack was adequate for data-path chips,and the complexity and size of the data-path was comparatively small.As current data-path chips,such as system-on-a-chip (SOC),become more complex,multiple data-path stacks are required to implement the entire data-path.As more data-path stacks are integrated into SOC,data-path is becoming a critical part of the whole giga-scale integrated circuits (GSI) design.The traditional physical design methodology can not satisfy the data-path performance requirements,because it can not accommodate the data-path bit-sliced structure and the strict performance (such as timing,coupling,and crosstalk) constraints.Challenges in the data-path physical design are addressed.The fundamental problems and key technologies in data-path physical design are analysed.The corresponding researches and solutions in this research field are also discussed.展开更多
In this paper, we propose a new lightweight block cipher named RECTANGLE. The main idea of the design of RECTANGLE is to allow lightweight and fast implementations using bit-slice techniques. RECTANGLE uses an SP-netw...In this paper, we propose a new lightweight block cipher named RECTANGLE. The main idea of the design of RECTANGLE is to allow lightweight and fast implementations using bit-slice techniques. RECTANGLE uses an SP-network. The substitution layer consists of 16 4 × 4 S-boxes in parallel. The permutation layer is composed of 3 rotations. As shown in this paper, RECTANGLE offers great performance in both hardware and software environment, which provides enough flexibility for different application scenario. The following are3 main advantages of RECTANGLE. First, RECTANGLE is extremely hardware-friendly. For the 80-bit key version, a one-cycle-per-round parallel implementation only needs 1600 gates for a throughput of 246 Kbits/s at100 k Hz clock and an energy efficiency of 3.0 p J/bit. Second, RECTANGLE achieves a very competitive software speed among the existing lightweight block ciphers due to its bit-slice style. Using 128-bit SSE instructions,a bit-slice implementation of RECTANGLE reaches an average encryption speed of about 3.9 cycles/byte for messages around 3000 bytes. Last but not least, we propose new design criteria for the RECTANGLE S-box.Due to our careful selection of the S-box and the asymmetric design of the permutation layer, RECTANGLE achieves a very good security-performance tradeoff. Our extensive and deep security analysis shows that the highest number of rounds that we can attack, is 18(out of 25).展开更多
IoT devices have been widely used with the advent of 5G.These devices contain a large amount of private data during transmission.It is primely important for ensuring their security.Therefore,we proposed a lightweight ...IoT devices have been widely used with the advent of 5G.These devices contain a large amount of private data during transmission.It is primely important for ensuring their security.Therefore,we proposed a lightweight block cipher based on dynamic S-box named DBST.It is introduced for devices with limited hardware resources and high throughput requirements.DBST is a 128-bit block cipher supporting 64-bit key,which is based on a new generalized Feistel variant structure.It retains the consistency and significantly boosts the diffusion of the traditional Feistel structure.The SubColumns of round function is implemented by combining bit-slice technology with subkeys.The S-box is dynamically associated with the key.It has been demonstrated that DBST has a good avalanche effect,low hardware area,and high throughput.Our S-box has been proven to have fewer differential features than RECTANGLE S-box.The security analysis of DBST reveals that it can against impossible differential attack,differential attack,linear attack,and other types of attacks.展开更多
This paper introduces the microarchitecture and physical implementation of the Godson-2E processor, which is a four-issue superscalar RISC processor that supports the 64-bit MIPS instruction set. The adoption of the a...This paper introduces the microarchitecture and physical implementation of the Godson-2E processor, which is a four-issue superscalar RISC processor that supports the 64-bit MIPS instruction set. The adoption of the aggressive out-of-order execution and memory hierarchy techniques help Godson-2E to achieve high performance. The Godson-2E processor has been physically designed in a 7-metal 90nm CMOS process using the cell-based methodology with some bitsliced manual placement and a number of crafted cells and macros. The processor can be run at 1GHz and achieves a SPEC CPU2000 rate higher than 500.展开更多
文摘Previously,a single data-path stack was adequate for data-path chips,and the complexity and size of the data-path was comparatively small.As current data-path chips,such as system-on-a-chip (SOC),become more complex,multiple data-path stacks are required to implement the entire data-path.As more data-path stacks are integrated into SOC,data-path is becoming a critical part of the whole giga-scale integrated circuits (GSI) design.The traditional physical design methodology can not satisfy the data-path performance requirements,because it can not accommodate the data-path bit-sliced structure and the strict performance (such as timing,coupling,and crosstalk) constraints.Challenges in the data-path physical design are addressed.The fundamental problems and key technologies in data-path physical design are analysed.The corresponding researches and solutions in this research field are also discussed.
基金supported by National Natural Science Foundation of China(Grant No.61379138)Research Fund KU Leuven(OT/13/071)+1 种基金"Strategic Priority Research Program"of the Chinese Academy of Sciences(Grant No.XDA06010701)National High-tech R&D Program of China(863 Program)(Grant No.2013AA014002)
文摘In this paper, we propose a new lightweight block cipher named RECTANGLE. The main idea of the design of RECTANGLE is to allow lightweight and fast implementations using bit-slice techniques. RECTANGLE uses an SP-network. The substitution layer consists of 16 4 × 4 S-boxes in parallel. The permutation layer is composed of 3 rotations. As shown in this paper, RECTANGLE offers great performance in both hardware and software environment, which provides enough flexibility for different application scenario. The following are3 main advantages of RECTANGLE. First, RECTANGLE is extremely hardware-friendly. For the 80-bit key version, a one-cycle-per-round parallel implementation only needs 1600 gates for a throughput of 246 Kbits/s at100 k Hz clock and an energy efficiency of 3.0 p J/bit. Second, RECTANGLE achieves a very competitive software speed among the existing lightweight block ciphers due to its bit-slice style. Using 128-bit SSE instructions,a bit-slice implementation of RECTANGLE reaches an average encryption speed of about 3.9 cycles/byte for messages around 3000 bytes. Last but not least, we propose new design criteria for the RECTANGLE S-box.Due to our careful selection of the S-box and the asymmetric design of the permutation layer, RECTANGLE achieves a very good security-performance tradeoff. Our extensive and deep security analysis shows that the highest number of rounds that we can attack, is 18(out of 25).
文摘IoT devices have been widely used with the advent of 5G.These devices contain a large amount of private data during transmission.It is primely important for ensuring their security.Therefore,we proposed a lightweight block cipher based on dynamic S-box named DBST.It is introduced for devices with limited hardware resources and high throughput requirements.DBST is a 128-bit block cipher supporting 64-bit key,which is based on a new generalized Feistel variant structure.It retains the consistency and significantly boosts the diffusion of the traditional Feistel structure.The SubColumns of round function is implemented by combining bit-slice technology with subkeys.The S-box is dynamically associated with the key.It has been demonstrated that DBST has a good avalanche effect,low hardware area,and high throughput.Our S-box has been proven to have fewer differential features than RECTANGLE S-box.The security analysis of DBST reveals that it can against impossible differential attack,differential attack,linear attack,and other types of attacks.
基金Supported by the National Natural Science Foundation of China for Distinguished Young Scholars under Grant No. 60325205, the National Natural Science Foundation of China under Grant No. 60673146, the National High Technology Development 863 Program of China under Grants No. 2002AAl10010, No. 2005AAl10010, No. 2005AAl19020, and the National Grand Fundamental Research 973 Program of China under Grant No. 2005CB321600.
文摘This paper introduces the microarchitecture and physical implementation of the Godson-2E processor, which is a four-issue superscalar RISC processor that supports the 64-bit MIPS instruction set. The adoption of the aggressive out-of-order execution and memory hierarchy techniques help Godson-2E to achieve high performance. The Godson-2E processor has been physically designed in a 7-metal 90nm CMOS process using the cell-based methodology with some bitsliced manual placement and a number of crafted cells and macros. The processor can be run at 1GHz and achieves a SPEC CPU2000 rate higher than 500.