Bitter acids, known for their use as beer flavoring and for their diverse biological activities, are predominantly formed in hop (Humulus lupulus) glandular trichomes. Branched short-chain acyI-CoAs (e.g. isobutyry...Bitter acids, known for their use as beer flavoring and for their diverse biological activities, are predominantly formed in hop (Humulus lupulus) glandular trichomes. Branched short-chain acyI-CoAs (e.g. isobutyryI-CoA, isovaleryl- CoA and 2-methylbutyryI-CoA), derived from the degradation of branched-chain amino acids (BCAAs), are essential building blocks for the biosynthesis of bitter acids in hops. However, little is known regarding what components are needed to produce and maintain the pool of branched short-chain acyI-CoAs in hop trichomes. Here, we present several lines of evidence that both CoA ligases and thioesterases are likely involved in bitter acid biosynthesis. Recombinant HICCL2 (carboxyl CoA ligase) protein had high specific activity for isovaleric acid as a substrate (Kcat/Km = 4100 s-~ M-l), whereas recombinant HICCL4 specifically utilized isobutyric acid (Kcat/Km = 1800 s-1 M-1) and 2-methylbutyric acid (Kcat/ Km = 6900 s-1 M-~) as substrates. Both HICCLs, like hop valerophenone synthase (HIVPS), were expressed strongly in glandular trichomes and localized to the cytoplasm. Co-expression of HICCL2 and HICCL4 with HIVPS in yeast led to significant production of acylphloroglucinols (the direct precursors for bitter acid biosynthesis), which further confirmed the biochemical function of these two HICCLs in vivo. Functional identification of a thioesterase that catalyzed the reverse reaction of CCLs in mitochondria, together with the comprehensive analysis of genes involved BCAA catabolism, supported the idea that cytosolic CoA ligases are required for linking BCAA degradation and bitter acid biosynthesis in glandular trichomes. The evolution and other possible physiological roles of branched short-chain fatty acid:CoA ligases in planta are also discussed.展开更多
The purpose of the present study was to examine the effect of adenylic acid (adenosine 5-monophosphate;AMP), a known nutritional enhancer, on inhibiting the bitterness of antipsychotic medicines administered to patien...The purpose of the present study was to examine the effect of adenylic acid (adenosine 5-monophosphate;AMP), a known nutritional enhancer, on inhibiting the bitterness of antipsychotic medicines administered to patients with mental illnesses, including children. First, we chose four antipsychotic medicines, amitriptyline hydrochloride (AMT), chlorpromazine hydrochloride (CPZ), haloperidol (HPD) and risperidone (RIS) and evaluated the inhibition of their bitterness by AMP through taste sensor measurements. AMP showed a significant bitterness inhibition effect on all drugs. Second, MarvinSketch analysis revealed the potential formation of electrostatic interactions between ionic forms (IV) of AMP and ionic (cationic) forms of each drug, which resulted in bitterness suppression. Third, chemical shift perturbations in 1H-NMR studies suggested an interaction between the phosphate group of AMP and amino group of AMT, CPZ, HPD and RIS. Last, conventional elution experiments of up to 1 min simulating oral cavity conditions were performed for 1 whole AMT tablet, half AMT tablet, crushed half AMT tablet, and crushed AMT tablet containing AMP powder/solution (1, 3 mM potency). The taste sensor output values of the crushed AMT tablet containing AMP powder/solution (1, 3 mM potency) were significantly lower than those of the crushed tablet.展开更多
More than 1000 herbal products have been used by diverse cultures of the world to treat hyperglycemia and among them bitter melon (Momordica charantia) is one of the most popular herbal resource. The beneficial effect...More than 1000 herbal products have been used by diverse cultures of the world to treat hyperglycemia and among them bitter melon (Momordica charantia) is one of the most popular herbal resource. The beneficial effects of bitter melon is not limited to hypoglycaemia only, but it also ameliorates diet induced obesity, insulin resistance and exhibit cardioprotective effects. The present study attempts to investigate the effect of bitter melon fruit juice on a newly investigated risk factor, sialic acid in type2 diabetics. A total of 40 type2 diabetic patients, divided into group A (n = 20) and group B (n = 20) were investigated during the present study. The patients of group A were following bitter melon fruit juice treatment along with diet control, whereas the patients of group B were on diet control only. Serum sialic acid (SSA) decreased in group A from 66.20 ± 2.30 mg/dl to 63.50 ± 2.10 mg/dl (<0.11) but, increased in group B from 66.50 ± 1.70 mg/dl to 68.20 ± 2.50 mg/dl (<0.12), compared to baseline. Post-treatment between group comparison revealed a significant difference (<0.05). The beneficial effects on fasting plasma glucose (FPG) and glycohemoglobin (HbA1-c) were also greater in group A compared to group B as was the case with blood lipids, weight and blood pressure. The study provides another mechanism for the cardioprotective effect of bitter melon and further strengthens its value in the management of type2 diabetes.展开更多
The purpose of this study was to prepare a poly-γ-glutamic acid hydrogel (PGA gel), to examine its ease of swallowing using texture profile analysis (TPA) and to evaluate its taste-masking effects on basic or acidic ...The purpose of this study was to prepare a poly-γ-glutamic acid hydrogel (PGA gel), to examine its ease of swallowing using texture profile analysis (TPA) and to evaluate its taste-masking effects on basic or acidic drugs using the artificial taste sensor. Using TPA, 0.5% and 1.0% PGA gels, 0.5% and 1.0% agar and 1.0% ι-carrageenan in the absence of drug was examined the hardness, adhesiveness and cohesiveness, ranked according to permission criteria published by the Japanese Consumers Affairs Agency. 0.5% PGA gel and 1.0% agar were classified into grade II. In the taste sensor measurement, the bitterness suppressions by 0.5% PGA gel were larger than that by 1.0% agar in all drugs and the bitterness suppressions of basic drugs in 0.5% PGA gel were more potent than those of acidic drugs in 0.5% PGA gel. 1H-nuclear magnetic resonance spectroscopic analysis was carried out to examine the difference in mechanism of bitterness suppression between basic drugs and acidic drugs mixed with PGA gel. The signals of the proton nearest to the nitrogen atom of basic drugs shifted clearly upfield, suggesting an interaction between the amino group of basic drugs and the carboxyl group of PGA gel. In conclusion, PGA gel is expected to be a useful excipient in formulations contained various drugs, especially basic drugs;it also has advantage for not only increasing ease of swallowing but also masking the bitterness of drugs even though a small amount of a single drug dose might be preferred.展开更多
通过分析测定麻竹笋苦涩味物质含量与感官评定方法确定竹笋苦涩味物质成分及与口感的关系。麻竹鲜笋在100℃纯净水中分别进行0、30、90、150 s和420 s 5个时间梯度水煮处理,并测定煮后笋汤、笋渣的可溶性单宁、草酸和游离苦味氨基酸(Phe...通过分析测定麻竹笋苦涩味物质含量与感官评定方法确定竹笋苦涩味物质成分及与口感的关系。麻竹鲜笋在100℃纯净水中分别进行0、30、90、150 s和420 s 5个时间梯度水煮处理,并测定煮后笋汤、笋渣的可溶性单宁、草酸和游离苦味氨基酸(Phe、Val、Arg、Met和Leu)含量,感官评定小组对其涩味、苦味强度评定,并通过对食品级草酸、单宁标准样品配制的不同质量浓度溶液进行苦涩味感官评定,建立单宁、草酸、单宁和草酸混合液的质量浓度与滋味强度的特征曲线函数。结果表明,影响麻竹笋苦涩味的主要物质是可溶性单宁,竹笋苦味和涩味均与单宁含量呈极显著关系,相关系数分别达0.896和0.867;竹笋涩味与草酸含量呈显著关系,相关系数为0.448,而竹笋苦味与草酸含量无显著关系;竹笋苦涩味与游离苦味氨基酸含量均无显著关系。利用单宁特征曲线函数对竹笋苦涩味偏重的成因进行了分析,对9个笋渣、笋汤的分析结果表明,单宁特征曲线函数对竹笋涩味的解释程度达60.6%~136.4%,对竹笋苦味的解释程度达63.4%~132.0%,较高的可溶性单宁含量是引起麻竹笋苦涩味偏重的主要原因。展开更多
基金the National Program on Key Basic Research Projects,the 'One hundred talents' project of the Chinese Academy of Sciences,the National Natural Sciences Foundation of China,the National Science Foundation,the State Key Laboratory of Plant Genomics of China
文摘Bitter acids, known for their use as beer flavoring and for their diverse biological activities, are predominantly formed in hop (Humulus lupulus) glandular trichomes. Branched short-chain acyI-CoAs (e.g. isobutyryI-CoA, isovaleryl- CoA and 2-methylbutyryI-CoA), derived from the degradation of branched-chain amino acids (BCAAs), are essential building blocks for the biosynthesis of bitter acids in hops. However, little is known regarding what components are needed to produce and maintain the pool of branched short-chain acyI-CoAs in hop trichomes. Here, we present several lines of evidence that both CoA ligases and thioesterases are likely involved in bitter acid biosynthesis. Recombinant HICCL2 (carboxyl CoA ligase) protein had high specific activity for isovaleric acid as a substrate (Kcat/Km = 4100 s-~ M-l), whereas recombinant HICCL4 specifically utilized isobutyric acid (Kcat/Km = 1800 s-1 M-1) and 2-methylbutyric acid (Kcat/ Km = 6900 s-1 M-~) as substrates. Both HICCLs, like hop valerophenone synthase (HIVPS), were expressed strongly in glandular trichomes and localized to the cytoplasm. Co-expression of HICCL2 and HICCL4 with HIVPS in yeast led to significant production of acylphloroglucinols (the direct precursors for bitter acid biosynthesis), which further confirmed the biochemical function of these two HICCLs in vivo. Functional identification of a thioesterase that catalyzed the reverse reaction of CCLs in mitochondria, together with the comprehensive analysis of genes involved BCAA catabolism, supported the idea that cytosolic CoA ligases are required for linking BCAA degradation and bitter acid biosynthesis in glandular trichomes. The evolution and other possible physiological roles of branched short-chain fatty acid:CoA ligases in planta are also discussed.
文摘The purpose of the present study was to examine the effect of adenylic acid (adenosine 5-monophosphate;AMP), a known nutritional enhancer, on inhibiting the bitterness of antipsychotic medicines administered to patients with mental illnesses, including children. First, we chose four antipsychotic medicines, amitriptyline hydrochloride (AMT), chlorpromazine hydrochloride (CPZ), haloperidol (HPD) and risperidone (RIS) and evaluated the inhibition of their bitterness by AMP through taste sensor measurements. AMP showed a significant bitterness inhibition effect on all drugs. Second, MarvinSketch analysis revealed the potential formation of electrostatic interactions between ionic forms (IV) of AMP and ionic (cationic) forms of each drug, which resulted in bitterness suppression. Third, chemical shift perturbations in 1H-NMR studies suggested an interaction between the phosphate group of AMP and amino group of AMT, CPZ, HPD and RIS. Last, conventional elution experiments of up to 1 min simulating oral cavity conditions were performed for 1 whole AMT tablet, half AMT tablet, crushed half AMT tablet, and crushed AMT tablet containing AMP powder/solution (1, 3 mM potency). The taste sensor output values of the crushed AMT tablet containing AMP powder/solution (1, 3 mM potency) were significantly lower than those of the crushed tablet.
文摘More than 1000 herbal products have been used by diverse cultures of the world to treat hyperglycemia and among them bitter melon (Momordica charantia) is one of the most popular herbal resource. The beneficial effects of bitter melon is not limited to hypoglycaemia only, but it also ameliorates diet induced obesity, insulin resistance and exhibit cardioprotective effects. The present study attempts to investigate the effect of bitter melon fruit juice on a newly investigated risk factor, sialic acid in type2 diabetics. A total of 40 type2 diabetic patients, divided into group A (n = 20) and group B (n = 20) were investigated during the present study. The patients of group A were following bitter melon fruit juice treatment along with diet control, whereas the patients of group B were on diet control only. Serum sialic acid (SSA) decreased in group A from 66.20 ± 2.30 mg/dl to 63.50 ± 2.10 mg/dl (<0.11) but, increased in group B from 66.50 ± 1.70 mg/dl to 68.20 ± 2.50 mg/dl (<0.12), compared to baseline. Post-treatment between group comparison revealed a significant difference (<0.05). The beneficial effects on fasting plasma glucose (FPG) and glycohemoglobin (HbA1-c) were also greater in group A compared to group B as was the case with blood lipids, weight and blood pressure. The study provides another mechanism for the cardioprotective effect of bitter melon and further strengthens its value in the management of type2 diabetes.
文摘The purpose of this study was to prepare a poly-γ-glutamic acid hydrogel (PGA gel), to examine its ease of swallowing using texture profile analysis (TPA) and to evaluate its taste-masking effects on basic or acidic drugs using the artificial taste sensor. Using TPA, 0.5% and 1.0% PGA gels, 0.5% and 1.0% agar and 1.0% ι-carrageenan in the absence of drug was examined the hardness, adhesiveness and cohesiveness, ranked according to permission criteria published by the Japanese Consumers Affairs Agency. 0.5% PGA gel and 1.0% agar were classified into grade II. In the taste sensor measurement, the bitterness suppressions by 0.5% PGA gel were larger than that by 1.0% agar in all drugs and the bitterness suppressions of basic drugs in 0.5% PGA gel were more potent than those of acidic drugs in 0.5% PGA gel. 1H-nuclear magnetic resonance spectroscopic analysis was carried out to examine the difference in mechanism of bitterness suppression between basic drugs and acidic drugs mixed with PGA gel. The signals of the proton nearest to the nitrogen atom of basic drugs shifted clearly upfield, suggesting an interaction between the amino group of basic drugs and the carboxyl group of PGA gel. In conclusion, PGA gel is expected to be a useful excipient in formulations contained various drugs, especially basic drugs;it also has advantage for not only increasing ease of swallowing but also masking the bitterness of drugs even though a small amount of a single drug dose might be preferred.
文摘通过分析测定麻竹笋苦涩味物质含量与感官评定方法确定竹笋苦涩味物质成分及与口感的关系。麻竹鲜笋在100℃纯净水中分别进行0、30、90、150 s和420 s 5个时间梯度水煮处理,并测定煮后笋汤、笋渣的可溶性单宁、草酸和游离苦味氨基酸(Phe、Val、Arg、Met和Leu)含量,感官评定小组对其涩味、苦味强度评定,并通过对食品级草酸、单宁标准样品配制的不同质量浓度溶液进行苦涩味感官评定,建立单宁、草酸、单宁和草酸混合液的质量浓度与滋味强度的特征曲线函数。结果表明,影响麻竹笋苦涩味的主要物质是可溶性单宁,竹笋苦味和涩味均与单宁含量呈极显著关系,相关系数分别达0.896和0.867;竹笋涩味与草酸含量呈显著关系,相关系数为0.448,而竹笋苦味与草酸含量无显著关系;竹笋苦涩味与游离苦味氨基酸含量均无显著关系。利用单宁特征曲线函数对竹笋苦涩味偏重的成因进行了分析,对9个笋渣、笋汤的分析结果表明,单宁特征曲线函数对竹笋涩味的解释程度达60.6%~136.4%,对竹笋苦味的解释程度达63.4%~132.0%,较高的可溶性单宁含量是引起麻竹笋苦涩味偏重的主要原因。