期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Enhanced Mn^(2+)solidification and NH_(4)^(+)-N removal from electrolytic manganese metal residue via surfactants
1
作者 Jiancheng Shu Xiangfei Zeng +4 位作者 Danyang Sun Yong Yang Zuohua Liu Mengjun Chen Daoyong Tan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第9期205-212,共8页
Electrolytic manganese metal residue(EMMR)harmless treatment has always lacked a low-cost and quick processing technology.In this study,surfactants,namely tetradecyl trimethylammonium chloride(TTC),sodium dodecyl benz... Electrolytic manganese metal residue(EMMR)harmless treatment has always lacked a low-cost and quick processing technology.In this study,surfactants,namely tetradecyl trimethylammonium chloride(TTC),sodium dodecyl benzene sulfonate(SDBS),sodium lignin sulfonate(SLS),and octadecyl trimethylammonium chloride(OTC),were used in the solidification of Mn^(2+)and removal of NH_(4)^(+)-N from EMMR.The Mn^(2+)and NH_(4)^(+)-N concentrations under different reaction conditions,Mn^(2+)solidification and NH_(4)^(+)-N removal mechanisms,and leaching behavior were studied.The results revealed that the surfactants could enhance the Mn^(2+)solidification and NH_(4)^(+)-N removal from EMMR,and the order of enhancement was as follows:TTC>SDBS>OTC>SLS.The NH_(4)^(+)-N and Mn^(2+)concentrations were 12.3 and 0.05 mg·L^(-1)with the use of 60.0 mg·kg^(-1)TTC under optimum conditions(solid–liquid ratio of 1.5:1,EMMR to BRM mass ratio of 100:8,temperature of 20℃,and reaction duration of 12 h),which met the integrated wastewater discharge standard(GB8978-1996).Mn^(2+)was mainly solidified as Mn(OH)_(2),MnOOH and MnSiO_(3),and NH_(4)^(+)-N in EMMR was mostly removed in the form of ammonia.The results of this study could provide a new idea for cost-effective EMMR harmless treatment. 展开更多
关键词 Electrolytic manganese metal residue Mn^(2+)solidification NH_(4)^(+)-N removal SURFACTANTS
下载PDF
Mn^(2+)对草酸还原Cr(Ⅵ)的强化效果及机理研究 被引量:1
2
作者 袁芳 许猛 +2 位作者 张婧懿 宣丽爽 秦传玉 《安全与环境工程》 CAS CSCD 北大核心 2021年第3期94-100,178,共8页
地下环境中普遍存在的金属离子和小分子有机酸可以共同还原降解对环境和人体有害的Cr(Ⅵ)。通过探讨不同影响因素(体系组分、初始pH值、有机酸浓度、金属离子浓度)下,Cr(Ⅵ)的还原转化效果及其规律,确定了最佳反应组合,并探讨了Mn^(2+)... 地下环境中普遍存在的金属离子和小分子有机酸可以共同还原降解对环境和人体有害的Cr(Ⅵ)。通过探讨不同影响因素(体系组分、初始pH值、有机酸浓度、金属离子浓度)下,Cr(Ⅵ)的还原转化效果及其规律,确定了最佳反应组合,并探讨了Mn^(2+)对草酸还原Cr(Ⅵ)的强化效果及机理。结果表明:通过对比5种常见的小分子有机酸和5种常见的金属阳离子,确定了Mn^(2+)/草酸对Cr(Ⅵ)的还原效果最为显著;Mn^(2+)和草酸同时存在的反应体系中,Cr(Ⅵ)的还原反应分为缓慢诱导期和自动加速期,两个阶段均符合拟一级动力学;随着反应体系初始pH值的增大,Cr(Ⅵ)的还原反应速率逐渐减小;草酸和Mn^(2+)浓度分别上升时,明显加速了Cr(Ⅵ)的还原;在Mn^(2+)/草酸反应体系中引入乙二胺四乙酸(EDTA)对Mn^(2+)强化草酸还原Cr(Ⅵ)有较强的抑制作用;通过3次Cr(Ⅵ)循环还原试验,证实了Cr(Ⅵ)还原过程中Mn^(2+)/草酸/Cr(Ⅵ)和Mn^(3+)/草酸/Cr(Ⅵ)两种中间体络合物的重要作用,并且测定了Cr(Ⅵ)还原的最终产物为Cr(Ⅲ)。该研究结果对揭示地下环境中铬的形态变化及其迁移转化规律具有重要的环境意义。 展开更多
关键词 草酸 Mn^(2+) 强化还原 六价铬[Cr(Ⅵ)]
下载PDF
Confined Mn^(2+) enables effective aerobic oxidation catalysis
3
作者 Desheng Yuan Sicong Ma +12 位作者 Xiao Kong Chi Zhang Lin Chen Chengsheng Yang Lihua Wang Zhen Liu Lin Ye Yongmei Liu Rui Ma Zhi-Pan Liu Yifeng Zhu Yong Cao Xinhe Bao 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第5期1545-1553,共9页
Effective and mild activation of O_(2) is essential but challenging for aerobic oxidation. In heterogeneous catalysis, high-valence manganese oxide(e.g., +4) is known to be active for the oxidation, whereas divalent M... Effective and mild activation of O_(2) is essential but challenging for aerobic oxidation. In heterogeneous catalysis, high-valence manganese oxide(e.g., +4) is known to be active for the oxidation, whereas divalent MnO is ineffective due to its limited capacity to supply surface oxygen and its thermodynamically unstable structure when binding O_(2) in reaction conditions. Inspired by natural enzymes that rely on divalent Mn^(2+), we discovered that confining Mn^(2+) onto the Mn_(2)O_(3) surface through a dedicated calcination process creates highly active catalysts for the aerobic oxidation of 5-hydroxymethylfurfural, benzyl alcohol, and CO.The Mn_(2)O_(3)-confined Mn^(2+) is undercoordinated and efficiently mediates O_(2) activation, resulting in 2–3 orders of magnitude higher activity than Mn_(2)O_(3) alone. Through low-temperature infrared spectroscopy, we distinguished low-content Mn^(2+) sites at Mn_(2)O_(3) surface, which are difficult to be differentiated by X-ray photoelectron spectroscopy. The combination of in-situ energydispersive X-ray absorption spectroscopy and X-ray diffraction further provides insights into the formation of the newly identified active Mn^(2+) sites. By optimizing the calcination step, we were able to increase the catalytic activity threefold further.The finding offers promising frontiers for exploring active oxidation catalysts by utilizing the confinement of Mn^(2+)and oftenignored calcination skills. 展开更多
关键词 confinement catalysis manganese oxide aerobic oxidation divalent Mn^(2+) operando spectroscopies
原文传递
Manganese salts function as potent adjuvants 被引量:14
4
作者 Rui Zhang Chenguang Wang +10 位作者 Yukun Guan Xiaoming Wei Mengyin Sha Mengran Yi Miao Jing Mengze Lv Wen Guo Jing Xu Yi Wan Xin-Ming Jia Zhengfan Jiang 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2021年第5期1222-1234,共13页
Aluminum-containing adjuvants have been used for nearly 100 years to enhance immune responses in billions of doses of vaccines.To date,only a few adjuvants have been approved for use in humans,among which aluminum-con... Aluminum-containing adjuvants have been used for nearly 100 years to enhance immune responses in billions of doses of vaccines.To date,only a few adjuvants have been approved for use in humans,among which aluminum-containing adjuvants are the only ones widely used.However,the medical need for potent and safe adjuvants is currently continuously increasing,especially those triggering cellular immune responses for cytotoxic T lymphocyte activation,which are urgently needed for the development of efficient virus and cancer vaccines.Manganese is an essential micronutrient required for diverse biological activities,but its functions in immunity remain undefined.We previously reported that Mn^(2+) is important in the host defense against cytosolic dsDNA by facilitating cGAS-STING activation and that Mn^(2+)alone directly activates cGAS independent of dsDNA,leading to an unconventional catalytic synthesis of 2′3′-cGAMP.Herein,we found that Mn^(2+) strongly promoted immune responses by facilitating antigen uptake,presentation,and germinal center formation via both cGAS-STING and NLRP3 activation.Accordingly,a colloidal manganese salt(Mn jelly,MnJ)was formulated to act not only as an immune potentiator but also as a delivery system to stimulate humoral and cellular immune responses,inducing antibody production and CD4^(+)/CD8^(+)T-cell proliferation and activation by either intramuscular or intranasal immunization.When administered intranasally,MnJ also worked as a mucosal adjuvant,inducing high levels of secretory IgA.MnJ showed good adjuvant effects for all tested antigens,including T cell-dependent and T cell-independent antigens,such as bacterial capsular polysaccharides,thus indicating that it is a promising adjuvant candidate. 展开更多
关键词 manganese(Mn^(2+)) ADJUVANT cGAS-STING NLRP3 antigen presentation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部