In this paper, osculatory rational functions of Thiele-type introduced by Salzer (1962) are extended to the case of vector valued quantities using tile t'ormalism of Graves-Moms (1983). In the computation of the o...In this paper, osculatory rational functions of Thiele-type introduced by Salzer (1962) are extended to the case of vector valued quantities using tile t'ormalism of Graves-Moms (1983). In the computation of the osculatory continued h.actions, the three term recurrence relation is avoided and a new coefficient algorithm is introduced, which is the characteristic of recursive operation. Some examples are given to illustrate its effectiveness. A sutficient condition for cxistence is established. Some interpolating properties including uniqueness are discussed. In the end, all exact interpolating error formula is obtained.展开更多
At present, the methods of constructing vector valued rational interpolation function in rectangular mesh are mainly presented by means of the branched continued fractions. In order to get vector valued rational inter...At present, the methods of constructing vector valued rational interpolation function in rectangular mesh are mainly presented by means of the branched continued fractions. In order to get vector valued rational interpolation function with lower degree and better approximation effect, the paper divides rectangular mesh into pieces by choosing nonnegative integer parameters d1 (0 〈 dl ≤ m) and d2 (0 ≤ d2≤ n), builds bivariate polynomial vector interpolation for each piece, then combines with them properly. As compared with previous methods, the new method given by this paper is easy to compute and the degree for the interpolants is lower.展开更多
Focuses on a study that presented an axiomatic definition to bivariate vector valued rational interpolation on distinct plane interpolation points. Definition; Existence and uniqueness; Connection.
文摘In this paper, osculatory rational functions of Thiele-type introduced by Salzer (1962) are extended to the case of vector valued quantities using tile t'ormalism of Graves-Moms (1983). In the computation of the osculatory continued h.actions, the three term recurrence relation is avoided and a new coefficient algorithm is introduced, which is the characteristic of recursive operation. Some examples are given to illustrate its effectiveness. A sutficient condition for cxistence is established. Some interpolating properties including uniqueness are discussed. In the end, all exact interpolating error formula is obtained.
基金Supported by Shanghai Natural Science Foundation (Grant No.10ZR1410900)Key Disciplines of Shanghai Mu-nicipality (Grant No.S30104)+1 种基金the Anhui Provincial Natural Science Foundation (Grant No.070416227)Stu-dents’ Innovation Foundation of Hefei University of Technology (Grant No.XS08079)
文摘At present, the methods of constructing vector valued rational interpolation function in rectangular mesh are mainly presented by means of the branched continued fractions. In order to get vector valued rational interpolation function with lower degree and better approximation effect, the paper divides rectangular mesh into pieces by choosing nonnegative integer parameters d1 (0 〈 dl ≤ m) and d2 (0 ≤ d2≤ n), builds bivariate polynomial vector interpolation for each piece, then combines with them properly. As compared with previous methods, the new method given by this paper is easy to compute and the degree for the interpolants is lower.
基金the National Natural Science Foundation of China (19871054).
文摘Focuses on a study that presented an axiomatic definition to bivariate vector valued rational interpolation on distinct plane interpolation points. Definition; Existence and uniqueness; Connection.