The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applyi...The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applying the Stephan-Boltzmann law with the use of the Unruh radiation temperature at the surface of a black hole to calculate the power of radiation of the black hole is conceptually unphysical. This is because the Unruh radiation temperature results from the gravitational field of the object rather than from the thermal motion of matter of the object, so that the Stephan-Boltzmann law is not applicable. This paper shows that the emission power of Unruh radiation from a gravitational object should be calculated in terms of the rate of increase of the total Unruh radiation energy outside the object. The result obtained from this study indicates that a gravitational object can emit Unruh radiation when the variation of its mass and radius satisfies an inequality of dM/M > 1.25dR/R. For a black hole, the emission of Unruh radiation does not occur unless it can loose its mass (dM < 0). The emission power of Unruh radiation is only an extremely tiny part of the rate of mass-energy loss if the black hole is not extremely micro-sized. This study turns down our traditional understanding of the Hawking radiation and thermodynamics of black holes.展开更多
We study the Hawking radiation of 3D rotating hairy black holes. Specifically, we compute the transition probability of bosonic and fermionic particles in such backgrounds. Then, we show that the transition probabilit...We study the Hawking radiation of 3D rotating hairy black holes. Specifically, we compute the transition probability of bosonic and fermionic particles in such backgrounds. Then, we show that the transition probability is independent of the nature of the particle. It is observed that the charge of the scalar hairy B and the rotation parameter a control such a probability.展开更多
We provide a simple way for calculating the entropy of a Schwarzschild black hole from the entropy of its Hawking radiation. To this end, we show that if a thermodynamic system loses its energy only through the black ...We provide a simple way for calculating the entropy of a Schwarzschild black hole from the entropy of its Hawking radiation. To this end, we show that if a thermodynamic system loses its energy only through the black body radiation, its loss of entropy is always 3/4 of the entropy of the emitted radiation. This proposition enables us to relate the entropy of an evaporating black hole to the entropy of its Hawking radiation. Explicitly, by calculating the entropy of the Hawking radiation emitted in the full period of evaporation of the black hole, we find the Bekenstein-Hawking entropy of the initial black hole.展开更多
Using Damour-Ruflini's method, Hawking radiation from a general stationary black hole is investigated again deeply. Considering the back reaction of the particle to the space-time and energy conservation, we find tha...Using Damour-Ruflini's method, Hawking radiation from a general stationary black hole is investigated again deeply. Considering the back reaction of the particle to the space-time and energy conservation, we find that the radiation is not exactly thermal and can take out information from the black hole. This can be used to explain the information loss paradox, and the result is consistent with the works finished before.展开更多
The recent work of Nation et al., in which the Hawking radiation energy and entropy flow from a black hole is considered to be produced in a one-dimensional Landauer transport process, is extended to the case of a Rei...The recent work of Nation et al., in which the Hawking radiation energy and entropy flow from a black hole is considered to be produced in a one-dimensional Landauer transport process, is extended to the case of a Reissner- Nordstrom black hole. The energy flow contains not only the contribution of the thermal flux but also that of the particle flux. It is found that the charge can also be transported via the one-dimensional quantum tunnel. Because of the existence of the electrostatic potential, the entropy production rate is shown to be smaller than that of the Schwarzschild black hole.展开更多
In the light of Robinson and Wilczek's new idea,and motivated by Banerjee and Kulkarni's simplified method of using only the covariant anomaly to derive Hawking radiation from a black hole,we generally extend ...In the light of Robinson and Wilczek's new idea,and motivated by Banerjee and Kulkarni's simplified method of using only the covariant anomaly to derive Hawking radiation from a black hole,we generally extend the work to Kerr-Newman black hole in dragging coordinates frame.It is shown that the flows introduced to cancel the anomaly at the event horizon are equal to the corresponding Hawking radiation in dragging coordinates frame,which supports and extends Robinson and Wilczek's opinion.展开更多
Using a new tortoise coordinate transformation, this paper investigates the Hawking effect from an arbitrarily accelerating charged black hole by the improved Damour-Ruffini method. After the tortoise coordinate trans...Using a new tortoise coordinate transformation, this paper investigates the Hawking effect from an arbitrarily accelerating charged black hole by the improved Damour-Ruffini method. After the tortoise coordinate transformation, the Klein-Gordon equation can be written as the standard form at the event horizon. Then extending the outgoing wave from outside to inside of the horizon analytically, the surface gravity and Hawking temperature can be obtained automatically. It is found that the Hawking temperatures of different points on the surface are different. The quantum nonthermal radiation characteristics of a black hole near the event horizon is also discussed by studying the Hamilton-Jacobi equation in curved spacetime and the maximum overlap of the positive and negative energy levels near the event horizon is given. There is a dimensional problem in the standard tortoise coordinate and the present results may be more reasonable.展开更多
We have studied the Hawking radiation of the Kerr-Newman-Kasuya black hole via gauge and gravitational anomaly in the dragging coordinates. The fluxes of the electromagnetic current and the energy momentum tensor for ...We have studied the Hawking radiation of the Kerr-Newman-Kasuya black hole via gauge and gravitational anomaly in the dragging coordinates. The fluxes of the electromagnetic current and the energy momentum tensor for each partial wave in two-dimensional field are obtained.展开更多
This paper extends Parikh-Wilzcek's recent work, which treats the Hawking radiation as a semi-classical tunnelling process from the event horizon of four dimensional Schwarzshild and Reissner-Nordstrom black holes, t...This paper extends Parikh-Wilzcek's recent work, which treats the Hawking radiation as a semi-classical tunnelling process from the event horizon of four dimensional Schwarzshild and Reissner-Nordstrom black holes, to that of arbitrarily dimensional Reissner-Nordstrom de Sitter black hole. The result shows that the tunnelling rate is related to the change of Bekenstein-Hawking entropy and the factually radiant spectrum is no longer precisely thermal after taking the dynamical black hole background and energy conservation into account, but is consistent with the underlying unitary theory and then satisfies the first law of the black hole thermodynamics. Meanwhile, in Parikh-Wilzcek's framework, this paper points out that the information conservation is only suitable for the reversible process but in highly unstable evaporating black hole (irreversible process) the information loss is possible.展开更多
It is generally believed that matter inside or once entering a black hole will gravitationally fall into the center and form a size-less singularity, where the density goes to infinity and the spacetime breaks down wi...It is generally believed that matter inside or once entering a black hole will gravitationally fall into the center and form a size-less singularity, where the density goes to infinity and the spacetime breaks down with infinite curvature or gravitation. In accordance to the Unruh effect, one of the most surprizing predictions of quantum field theory, however, it is found from this study that such singularity cannot be actually formed because it violates the law of energy conservation. The total Unruh radiation energy of the size-less singularity is shown to be infinite, much greater than that the collapsing matter can generate. All the energies of the collapsing matter including the gravitational potential energy, deducted, are far below the Unruh radiation energy, increased, for the collapsing matter to form the singularity. The collapsing matter actually formed is shown to be not a size-less singular point but a small sphere with a finite radius, which is found to be dependent of the mass of the singularity sphere, approximately proportional to the square root of the mass. The radius of the singularity sphere cannot be zero, unless the mass also approaches to zero. The result obtained from this study not only provides us a quantum solution to the problem of black hole singularity, but also leads to profound implications to the spacetime and cosmology. The Unruh effect excludes a black hole to form a size-less singularity, which has a finite mass but infinite density, curvature, and Unruh radiation energy. A point-like or size-less singularity can only be massless and naked.展开更多
By introducing a new tortoise coordinate transformation, we investigate the quantum thermal and non-thermal radiations of a non-stationary Kerr-Newman-de Sitter black hole. The accurate location and radiate temperatur...By introducing a new tortoise coordinate transformation, we investigate the quantum thermal and non-thermal radiations of a non-stationary Kerr-Newman-de Sitter black hole. The accurate location and radiate temperature of the event horizon as well as the maximum energy of the non-thermal radiation are derived. It is shown that the radiate temperature and the maximum energy are related to not only the evaporation rate, but also the shape of the event horizon, moreover the maximum energy depends on the electromagnetic potential. Finally, we use the results to reduce the non-stationary Kerr-Newman black hole, the non-stationary Kerr black hole, the stationary Kerr-Newman-de Sitter black hole, and the static Schwarzshild black hole.展开更多
This paper derives the Hawking flux from the Schwarzschild black hole with a global monopole by using Robinson and Wilczek's method. Adopting a dimensional reduction technique, it can describe the effective quantum f...This paper derives the Hawking flux from the Schwarzschild black hole with a global monopole by using Robinson and Wilczek's method. Adopting a dimensional reduction technique, it can describe the effective quantum field in the (3 + 1)-dimensional global monopole background by an infinite collection of the (1 + 1)-dimensional massless fields if neglecting the ingoing modes near the horizon, where the gravitational anomaly can be cancelled by the (1 + 1)- dimensional black body radiation at the Hawking temperature.展开更多
Hawking radiation is viewed as a tunnelling process. In this way the emission rates of massless particles and massive particles tunnelling across the event horizon of general stationary axisymmetric black holes are ca...Hawking radiation is viewed as a tunnelling process. In this way the emission rates of massless particles and massive particles tunnelling across the event horizon of general stationary axisymmetric black holes are calculated, separately. The emission spectra of these two different kinds of outgoing particles have the same functional form and both are consistent with an underlying unitary theory.展开更多
This paper discusses Hawking radiation from the charged and magnetized Bafiados-Teitelboim-Zanelli (BTZ) black hole from the viewpoint of anomaly, initiated by Robinson and Wilczek recently. It reconstructs the elec...This paper discusses Hawking radiation from the charged and magnetized Bafiados-Teitelboim-Zanelli (BTZ) black hole from the viewpoint of anomaly, initiated by Robinson and Wilczek recently. It reconstructs the electromagnetic field tensor and the Lagrangian of the field corresponding to the source with electric and magnetic charges to redefine an equivalent charge and gauge potential. It employs the covariant anomaly cancellation method to determine the compensating fluxes of charge flow and energy-momentum tensor, which are shown to match with those of the 2- dimensional blackbody radiation at the Hawking temperature exactly.展开更多
Using a new tortoise coordinate transformation,we discuss the quantum nonthermal radiation characteristics near an event horizon by studying the Hamilton-Jacobi equation of a scalar particle in curved space-time,and o...Using a new tortoise coordinate transformation,we discuss the quantum nonthermal radiation characteristics near an event horizon by studying the Hamilton-Jacobi equation of a scalar particle in curved space-time,and obtain the event horizon surface gravity and the Hawking temperature on that event horizon.The results show that there is a crossing of particle energy near the event horizon.We derive the maximum overlap of the positive and negative energy levels.It is also found that the Hawking temperature of a black hole depends not only on the time,but also on the angle.There is a problem of dimension in the usual tortoise coordinate,so the present results obtained by using a correct-dimension new tortoise coordinate transformation may be more reasonable.展开更多
Hawking radiation of the stationary Kerr–de Sitter black hole is investigated using the relativistic Hamilton–Jacobi method. Meanwhile, extending this work to a non-stationary black hole using Dirac equations and ge...Hawking radiation of the stationary Kerr–de Sitter black hole is investigated using the relativistic Hamilton–Jacobi method. Meanwhile, extending this work to a non-stationary black hole using Dirac equations and generalized tortoise coordinate transformation, we derived the locations, the temperature of the thermal radiation as well as the maximum energy of the non-thermal radiation. It is found that the surface gravity and the Hawking temperature depend on both time and different angles. An extra coupling effect is obtained in the thermal radiation spectrum of Dirac particles which is absent from thermal radiation of scalar particles. Further, the chemical potential derived from the thermal radiation spectrum of scalar particle has been found to be equal to the highest energy of the negative energy state of the scalar particle in the non-thermal radiation for the Kerr–de Sitter black hole. It is also shown that for stationary black hole space time, these two different methods give the same Hawking radiation temperature.展开更多
Adopting the anomaly cancellation method, initiated by Robinson and Wilczek recently, this paper discusses Hawking radiation from the dilaton-(anti) de Sitter black hole. To save the underlying gauge and general cov...Adopting the anomaly cancellation method, initiated by Robinson and Wilczek recently, this paper discusses Hawking radiation from the dilaton-(anti) de Sitter black hole. To save the underlying gauge and general covariance, it introduces covariant fluxes of gauge and energy-momentum tensor to cancel the gauge and gravitational anomalies. The result shows that the introduced compensating fluxes are equivalent to those of a 2-dimensional blackbody radiation at Hawking temperature with appropriate chemical potential.展开更多
We extend Zhang and Zhao's recent work to the Schwarzschild-anti-de Sitter black hole with topological defect, whose Arnowitt-Deser-Misner (ADM) mass is no longer identical to its mass parameter. The behavior of t...We extend Zhang and Zhao's recent work to the Schwarzschild-anti-de Sitter black hole with topological defect, whose Arnowitt-Deser-Misner (ADM) mass is no longer identical to its mass parameter. The behavior of the tunneling massive particle is investigated and the emission rate is calculated. The result satisfies an underlying unitary theory and takes the same functional form as that of the mass-less particle.展开更多
Extending the Parikh's quantum tunneling method of an uncharged particle, we investigate the quantum radiation characteristics of a particle with electric and magnetic charge via tunneling from the event horizon of t...Extending the Parikh's quantum tunneling method of an uncharged particle, we investigate the quantum radiation characteristics of a particle with electric and magnetic charge via tunneling from the event horizon of the Kerr-Newman Kasuya black hole. The derived result supports the Parikh's opinion and the correction to the thermal spectrum is of precisely the form that satisfies the underlying unitary quantum theory, and finally provides a might explanation to the black hole information puzzle.展开更多
Hawking radiation from cosmological horizon and event horizon of the Reissner-Nordstrom de Sitter black hole with a global monopole is studied via a new method that was propounded by Robinson and Wilzek and elaborated...Hawking radiation from cosmological horizon and event horizon of the Reissner-Nordstrom de Sitter black hole with a global monopole is studied via a new method that was propounded by Robinson and Wilzek and elaborated by Banerjee and Kulkarni. The results show that the gauge current and energy-momentum tensor fluxes, which required keeping gauge covariance and general coordinate invariance at the quantum level in the effective field theory, are exactly equivalent to those of Hawking radiation from the event horizon and the cosmological horizon, respectively.展开更多
文摘The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applying the Stephan-Boltzmann law with the use of the Unruh radiation temperature at the surface of a black hole to calculate the power of radiation of the black hole is conceptually unphysical. This is because the Unruh radiation temperature results from the gravitational field of the object rather than from the thermal motion of matter of the object, so that the Stephan-Boltzmann law is not applicable. This paper shows that the emission power of Unruh radiation from a gravitational object should be calculated in terms of the rate of increase of the total Unruh radiation energy outside the object. The result obtained from this study indicates that a gravitational object can emit Unruh radiation when the variation of its mass and radius satisfies an inequality of dM/M > 1.25dR/R. For a black hole, the emission of Unruh radiation does not occur unless it can loose its mass (dM < 0). The emission power of Unruh radiation is only an extremely tiny part of the rate of mass-energy loss if the black hole is not extremely micro-sized. This study turns down our traditional understanding of the Hawking radiation and thermodynamics of black holes.
文摘We study the Hawking radiation of 3D rotating hairy black holes. Specifically, we compute the transition probability of bosonic and fermionic particles in such backgrounds. Then, we show that the transition probability is independent of the nature of the particle. It is observed that the charge of the scalar hairy B and the rotation parameter a control such a probability.
文摘We provide a simple way for calculating the entropy of a Schwarzschild black hole from the entropy of its Hawking radiation. To this end, we show that if a thermodynamic system loses its energy only through the black body radiation, its loss of entropy is always 3/4 of the entropy of the emitted radiation. This proposition enables us to relate the entropy of an evaporating black hole to the entropy of its Hawking radiation. Explicitly, by calculating the entropy of the Hawking radiation emitted in the full period of evaporation of the black hole, we find the Bekenstein-Hawking entropy of the initial black hole.
基金the National Basic Research Program of China under Grant No.2003CB716302the National Natural Science Foundation of China under Grant No.10773002
文摘Using Damour-Ruflini's method, Hawking radiation from a general stationary black hole is investigated again deeply. Considering the back reaction of the particle to the space-time and energy conservation, we find that the radiation is not exactly thermal and can take out information from the black hole. This can be used to explain the information loss paradox, and the result is consistent with the works finished before.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10773002, 10875012, and 11175019)the Fundamental Research Funds for the Central Universities, China (Grant No. 105116)
文摘The recent work of Nation et al., in which the Hawking radiation energy and entropy flow from a black hole is considered to be produced in a one-dimensional Landauer transport process, is extended to the case of a Reissner- Nordstrom black hole. The energy flow contains not only the contribution of the thermal flux but also that of the particle flux. It is found that the charge can also be transported via the one-dimensional quantum tunnel. Because of the existence of the electrostatic potential, the entropy production rate is shown to be smaller than that of the Schwarzschild black hole.
基金supported by National Natural Science Foundation of China under Grant No.10773008
文摘In the light of Robinson and Wilczek's new idea,and motivated by Banerjee and Kulkarni's simplified method of using only the covariant anomaly to derive Hawking radiation from a black hole,we generally extend the work to Kerr-Newman black hole in dragging coordinates frame.It is shown that the flows introduced to cancel the anomaly at the event horizon are equal to the corresponding Hawking radiation in dragging coordinates frame,which supports and extends Robinson and Wilczek's opinion.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10873003 and 11045005)the Natural Science Foundation of Zhejiang Province,China (Grant No. Y6090739)
文摘Using a new tortoise coordinate transformation, this paper investigates the Hawking effect from an arbitrarily accelerating charged black hole by the improved Damour-Ruffini method. After the tortoise coordinate transformation, the Klein-Gordon equation can be written as the standard form at the event horizon. Then extending the outgoing wave from outside to inside of the horizon analytically, the surface gravity and Hawking temperature can be obtained automatically. It is found that the Hawking temperatures of different points on the surface are different. The quantum nonthermal radiation characteristics of a black hole near the event horizon is also discussed by studying the Hamilton-Jacobi equation in curved spacetime and the maximum overlap of the positive and negative energy levels near the event horizon is given. There is a dimensional problem in the standard tortoise coordinate and the present results may be more reasonable.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10573005 and 10633010)the State Key Program for Basic Research of China (Grant No 2003CB716300)
文摘We have studied the Hawking radiation of the Kerr-Newman-Kasuya black hole via gauge and gravitational anomaly in the dragging coordinates. The fluxes of the electromagnetic current and the energy momentum tensor for each partial wave in two-dimensional field are obtained.
文摘This paper extends Parikh-Wilzcek's recent work, which treats the Hawking radiation as a semi-classical tunnelling process from the event horizon of four dimensional Schwarzshild and Reissner-Nordstrom black holes, to that of arbitrarily dimensional Reissner-Nordstrom de Sitter black hole. The result shows that the tunnelling rate is related to the change of Bekenstein-Hawking entropy and the factually radiant spectrum is no longer precisely thermal after taking the dynamical black hole background and energy conservation into account, but is consistent with the underlying unitary theory and then satisfies the first law of the black hole thermodynamics. Meanwhile, in Parikh-Wilzcek's framework, this paper points out that the information conservation is only suitable for the reversible process but in highly unstable evaporating black hole (irreversible process) the information loss is possible.
文摘It is generally believed that matter inside or once entering a black hole will gravitationally fall into the center and form a size-less singularity, where the density goes to infinity and the spacetime breaks down with infinite curvature or gravitation. In accordance to the Unruh effect, one of the most surprizing predictions of quantum field theory, however, it is found from this study that such singularity cannot be actually formed because it violates the law of energy conservation. The total Unruh radiation energy of the size-less singularity is shown to be infinite, much greater than that the collapsing matter can generate. All the energies of the collapsing matter including the gravitational potential energy, deducted, are far below the Unruh radiation energy, increased, for the collapsing matter to form the singularity. The collapsing matter actually formed is shown to be not a size-less singular point but a small sphere with a finite radius, which is found to be dependent of the mass of the singularity sphere, approximately proportional to the square root of the mass. The radius of the singularity sphere cannot be zero, unless the mass also approaches to zero. The result obtained from this study not only provides us a quantum solution to the problem of black hole singularity, but also leads to profound implications to the spacetime and cosmology. The Unruh effect excludes a black hole to form a size-less singularity, which has a finite mass but infinite density, curvature, and Unruh radiation energy. A point-like or size-less singularity can only be massless and naked.
基金Project supported by the National Natural Science Foundation of China (Grant No 10347008).
文摘By introducing a new tortoise coordinate transformation, we investigate the quantum thermal and non-thermal radiations of a non-stationary Kerr-Newman-de Sitter black hole. The accurate location and radiate temperature of the event horizon as well as the maximum energy of the non-thermal radiation are derived. It is shown that the radiate temperature and the maximum energy are related to not only the evaporation rate, but also the shape of the event horizon, moreover the maximum energy depends on the electromagnetic potential. Finally, we use the results to reduce the non-stationary Kerr-Newman black hole, the non-stationary Kerr black hole, the stationary Kerr-Newman-de Sitter black hole, and the static Schwarzshild black hole.
基金Project supported by the National Natural Science Foundation of China(Grant No10675051)
文摘This paper derives the Hawking flux from the Schwarzschild black hole with a global monopole by using Robinson and Wilczek's method. Adopting a dimensional reduction technique, it can describe the effective quantum field in the (3 + 1)-dimensional global monopole background by an infinite collection of the (1 + 1)-dimensional massless fields if neglecting the ingoing modes near the horizon, where the gravitational anomaly can be cancelled by the (1 + 1)- dimensional black body radiation at the Hawking temperature.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10573005 and 10633010).
文摘Hawking radiation is viewed as a tunnelling process. In this way the emission rates of massless particles and massive particles tunnelling across the event horizon of general stationary axisymmetric black holes are calculated, separately. The emission spectra of these two different kinds of outgoing particles have the same functional form and both are consistent with an underlying unitary theory.
基金supported by the National Natural Science Foundation of China (Grant No 10773008)
文摘This paper discusses Hawking radiation from the charged and magnetized Bafiados-Teitelboim-Zanelli (BTZ) black hole from the viewpoint of anomaly, initiated by Robinson and Wilczek recently. It reconstructs the electromagnetic field tensor and the Lagrangian of the field corresponding to the source with electric and magnetic charges to redefine an equivalent charge and gauge potential. It employs the covariant anomaly cancellation method to determine the compensating fluxes of charge flow and energy-momentum tensor, which are shown to match with those of the 2- dimensional blackbody radiation at the Hawking temperature exactly.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10873003,11045005,and 11273009)the Natural Science Foundation of Zhejiang Province,China (Grant No. Y6090739)
文摘Using a new tortoise coordinate transformation,we discuss the quantum nonthermal radiation characteristics near an event horizon by studying the Hamilton-Jacobi equation of a scalar particle in curved space-time,and obtain the event horizon surface gravity and the Hawking temperature on that event horizon.The results show that there is a crossing of particle energy near the event horizon.We derive the maximum overlap of the positive and negative energy levels.It is also found that the Hawking temperature of a black hole depends not only on the time,but also on the angle.There is a problem of dimension in the usual tortoise coordinate,so the present results obtained by using a correct-dimension new tortoise coordinate transformation may be more reasonable.
文摘Hawking radiation of the stationary Kerr–de Sitter black hole is investigated using the relativistic Hamilton–Jacobi method. Meanwhile, extending this work to a non-stationary black hole using Dirac equations and generalized tortoise coordinate transformation, we derived the locations, the temperature of the thermal radiation as well as the maximum energy of the non-thermal radiation. It is found that the surface gravity and the Hawking temperature depend on both time and different angles. An extra coupling effect is obtained in the thermal radiation spectrum of Dirac particles which is absent from thermal radiation of scalar particles. Further, the chemical potential derived from the thermal radiation spectrum of scalar particle has been found to be equal to the highest energy of the negative energy state of the scalar particle in the non-thermal radiation for the Kerr–de Sitter black hole. It is also shown that for stationary black hole space time, these two different methods give the same Hawking radiation temperature.
基金Project supported by the Scientific and Technological Foundation of Chongqing Municipal Education Commission of China (Grant No KJ0707011)
文摘Adopting the anomaly cancellation method, initiated by Robinson and Wilczek recently, this paper discusses Hawking radiation from the dilaton-(anti) de Sitter black hole. To save the underlying gauge and general covariance, it introduces covariant fluxes of gauge and energy-momentum tensor to cancel the gauge and gravitational anomalies. The result shows that the introduced compensating fluxes are equivalent to those of a 2-dimensional blackbody radiation at Hawking temperature with appropriate chemical potential.
文摘We extend Zhang and Zhao's recent work to the Schwarzschild-anti-de Sitter black hole with topological defect, whose Arnowitt-Deser-Misner (ADM) mass is no longer identical to its mass parameter. The behavior of the tunneling massive particle is investigated and the emission rate is calculated. The result satisfies an underlying unitary theory and takes the same functional form as that of the mass-less particle.
基金The project supported by the Fundamental Research Project of Sichuan Province of China under Grant No.05JY029-092
文摘Extending the Parikh's quantum tunneling method of an uncharged particle, we investigate the quantum radiation characteristics of a particle with electric and magnetic charge via tunneling from the event horizon of the Kerr-Newman Kasuya black hole. The derived result supports the Parikh's opinion and the correction to the thermal spectrum is of precisely the form that satisfies the underlying unitary quantum theory, and finally provides a might explanation to the black hole information puzzle.
基金supported by National Natural Science Foundation of China under Grant No.10773008
文摘Hawking radiation from cosmological horizon and event horizon of the Reissner-Nordstrom de Sitter black hole with a global monopole is studied via a new method that was propounded by Robinson and Wilzek and elaborated by Banerjee and Kulkarni. The results show that the gauge current and energy-momentum tensor fluxes, which required keeping gauge covariance and general coordinate invariance at the quantum level in the effective field theory, are exactly equivalent to those of Hawking radiation from the event horizon and the cosmological horizon, respectively.