This paper presents a novel framework for understanding time as an emergent phenomenon arising from quantum information dynamics. We propose that the flow of time and its directional arrow are intrinsically linked to ...This paper presents a novel framework for understanding time as an emergent phenomenon arising from quantum information dynamics. We propose that the flow of time and its directional arrow are intrinsically linked to the growth of quantum complexity and the evolution of entanglement entropy in physical systems. By integrating principles from quantum mechanics, information theory, and holography, we develop a comprehensive theory that explains how time can emerge from timeless quantum processes. Our approach unifies concepts from quantum mechanics, general relativity, and thermodynamics, providing new perspectives on longstanding puzzles such as the black hole information paradox and the arrow of time. We derive modified Friedmann equations that incorporate quantum information measures, offering novel insights into cosmic evolution and the nature of dark energy. The paper presents a series of experimental proposals to test key aspects of this theory, ranging from quantum simulations to cosmological observations. Our framework suggests a deeply information-theoretic view of the universe, challenging our understanding of the nature of reality and opening new avenues for technological applications in quantum computing and sensing. This work contributes to the ongoing quest for a unified theory of quantum gravity and information, potentially with far-reaching implications for our understanding of space, time, and the fundamental structure of the cosmos.展开更多
[Objective] The aim was to investigate and reveal effect of measurement time on emission flux of CO2 and N2O to ensure the optimum time of emission flux, in order to provide scientific reference for emission reduction...[Objective] The aim was to investigate and reveal effect of measurement time on emission flux of CO2 and N2O to ensure the optimum time of emission flux, in order to provide scientific reference for emission reduction of greenhouse gas in black soil region. [Method] Based on experiment of long-term fertilizer location in black soil region, the paper studied on daily dynamic variation of CO2 and N2O discharge in 3 key growth periods (booting stage, grain-filling stage and mature stage) to reveal differences of CO2 and N2O emission flux in different times. [Result] Daily variations of CO2 and N2O emission flux were large, from 205 mg/(m2·h) to 552 mg/(m2·h) for CO2 and from 51 h to 295 μg/(m2·h) for N2O. Trend of CO2 discharge in different growth times showed a unimodal curve, and the peak was at noon of 12:00 and the peak valley was at 3:00 am; discharge of N2O was small in day time at booting stage and large at night. Regardless of rice growth period effect on CO2 and N2O emission flux, representative time of CO2 discharge was 6:00-8:00 or 16:00-21:00; and time of N2O was 8:00-10:00 or 16:00-21:00; if CO2 and N2O emission fluxes were measured simultaneously, the optimum time was 16:00-18:00; if the measurement was started during 9:00-12:00, correction coefficients of CO2 and N2O were 0.81 and 0.90, respectively. [Conclusion] The result provided scientific reference for reduction of greenhouse gas emission in black soil region.展开更多
Recently Malihe Heydari-Fard obtained a spherically symmetric exterior black hole solution in the brane-world scenario, which can be used to explain the galaxy rotation curves without postulating dark matter. By analy...Recently Malihe Heydari-Fard obtained a spherically symmetric exterior black hole solution in the brane-world scenario, which can be used to explain the galaxy rotation curves without postulating dark matter. By analysing the particle effective potential, we have investigated the time-like geodesic structure of the spherically symmetric black hole in the brane-world. We mainly take account of how the cosmological constant α and the stellar pressure β affect the time-like geodesic structure of the black hole. We find that the radial particle falls to the singularity from a finite distance or plunges into the singularity, depending on its initial conditions. But the non-radial time-like geodesic structure is more complex than the radial case. We find that the particle moves on the bound orbit or stable (unstable) circle orbit or plunges into the singularity, or reflects to infinity, depending on its energy and initial conditions. By comparing the particle effective potential curves for different values of the stellar pressureβ and the cosmological constant α, we find that the stellar pressure parameter β does not affect the time-like geodesic structure of the black hole, but the cosmological constant a has an impact on its time-like geodesic structure.展开更多
Black cumin (Nigella sativa L.;Family-Ranunculaceae) is an important spice crop. Mature seeds are consumed for edible and medical purposes and also used as a food additive and flavour. Seed of black cumin has great po...Black cumin (Nigella sativa L.;Family-Ranunculaceae) is an important spice crop. Mature seeds are consumed for edible and medical purposes and also used as a food additive and flavour. Seed of black cumin has great potentiality as spice crop due to nutritive and medicinal values. The experiments were carried out at Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur during 2011 to 2012 to determine optimum planting time for seed production of black cumin. The experiment was two factorials. Factor A: 4 genotypes were V1: Exotic, Iran;V2: BARI kalozira-1;V3: Local, Faridpur and V4: Local, Natore. Factor B: sowing date: D1: 16 October;D2: 1 November;D3: 16 November and D4: 1 December. Therefore, treatment combinations were 16 in total. So, in 3 replications total plot was 48. Result revealed that significantly the highest 2.37 t/ha in V1, followed by V2 (1.96 t/ha). V2 and V3 (1.97 t/ha) were statistically similar and maximum yield was obtained from D2 (2.65 t/ha). In combined effect, maximum yield 3.00 t/ha was obtained in V1D2.. Investigation on time of sowing revealed that performance of black cumin was better in earlier sowings (16 October, 1 November) than later ones. The highest yield (4g plant-1;2.65 tha-1) was obtained when the crop was sown on 1 November. Among the genotypes, the exotic one with sowing in 1 November gave the highest seed yield (4.54 g·plant-1;3.00 t·ha-1).展开更多
Through the gauge field theory, we obtain the solution of the DBI-AdS black hole, In the meantime, according to the relations between the action and the grand partition function, we obtain the grand partition function...Through the gauge field theory, we obtain the solution of the DBI-AdS black hole, In the meantime, according to the relations between the action and the grand partition function, we obtain the grand partition function in the DBI-AdS black hole. The temperature and the potential of the DBI-AdS black hole are gained from differential of the grand partition function. With the thermodynamic relations, other thermodynamics are also obtained. The solution and the thermodynamics of the DBI-AdS black hole are turned out that they can reduce to the case of a charged black hole in four-dimensional spacetimes.展开更多
We find that π represents dual attributes. One is within the purely mathematical domain and can be derived for example, from infinite series, among several other methods. The other is within a 2D geometric-physical d...We find that π represents dual attributes. One is within the purely mathematical domain and can be derived for example, from infinite series, among several other methods. The other is within a 2D geometric-physical domain. This paper analyzes several physical constants from an analogous perspective where they are defined solely by mathematical and 2D geometric properties independent of any actual physical scaling data. The constants are evaluated as natural unit frequency equivalents of the neutron, electron, Bohr radius, Rydberg constant, Planck’s constant, Planck time, a Black hole with a Schwarzschild radius, the distance light travels in one time unit;and the fine structure constant. These constants are defined within two inter-related harmonic domains. In the linear domain, the ratios of the frequency equivalents of the Rydberg constant, Bohr radius, electron;and the fine structure constant are related to products of 2 and π. In the power law domain, their partial harmonic fraction powers, and the integer fraction powers of the fundamental frequency for Planck time are known. All of the constants are then derived at the point where a single fundamental frequency simultaneously fulfills both domains independent of any direct physical scale data. The derived values relative errors from the known values range from 10-3 to 10-1 supporting the concept and method.展开更多
Up to now, cosmology metrics have been based on Einstein relativity, established in 1905. Hubble has discovered the correlation between redshift and distance. Cosmology interprets the redshift as an expansion effect a...Up to now, cosmology metrics have been based on Einstein relativity, established in 1905. Hubble has discovered the correlation between redshift and distance. Cosmology interprets the redshift as an expansion effect a(t) through the ΛCDM model. We have proposed a new theory to explain Hubble law. The theory has been validated against observation data. It proposes a new approach of time which introduces the cosmic time tc. Cosmic time is an absolute reference to universe. It is zero at the edge with tc = 0, tc = T at the observer position and tc = s for any source between the edge and the observer, with T > s > 0. This theory acts like the relativity of space-time. The redshift is interpreted as a perspective parameter p(tc) = tc/T. Using gravitation, it is the Einstein effect applied to the uni-verse. This paper comments and interprets further consequences of this new theory. We emphasize the difference between duration (as usually used in classical cosmologic metrics) and the cosmic time tc as a notion of date. It induces two related effects: relativity of speed of light and time stretching. We explain why the cosmological standard model is not well suited to describe the Hubble law, to describe the universe. We also explain why gravitation and temperature increase when going from the center to the edge of the universe, when going from present to birth. The model has no use of black energy. As a consequence, the universe is seen as a black hole created by the cosmic time shock wave when tc = 0.展开更多
Intrinsic time quantum geometrodynamics is a formulation of quantum gravity naturally adapted to 3 + 1 dimensions. In this paper we construct its analogous 2 + 1 formulation, taking note of the mathematical structures...Intrinsic time quantum geometrodynamics is a formulation of quantum gravity naturally adapted to 3 + 1 dimensions. In this paper we construct its analogous 2 + 1 formulation, taking note of the mathematical structures which are preserved. We apply the resulting construction to convert the BTZ black hole metric to ITQG framework. We then modify the BTZ black hole in order to investigate the existence of the P-V criticality in ITQG theory.展开更多
A result from Kieffer, as outlined at the beginning of the article identifies two different candidates for initial time steps, delta t. We assert that this difference in time steps may be related to a specific early u...A result from Kieffer, as outlined at the beginning of the article identifies two different candidates for initial time steps, delta t. We assert that this difference in time steps may be related to a specific early universe Lorentz Violation. The author asserts that the existence of early universe Lorentz violation in turn is assisting in a breakup of primordial black holes. And that also has a tie into Kieffer different time steps as outlined. And the wrap up is given in the final part of this document.展开更多
Static, spherically symmetric bodies are studied by the use of flat space-time theory of gravitation. In empty space a singularity at a Euclidean distance from the centre can exist. But the radius of this singular sph...Static, spherically symmetric bodies are studied by the use of flat space-time theory of gravitation. In empty space a singularity at a Euclidean distance from the centre can exist. But the radius of this singular sphere is smaller than the radius of the body. Hence, there is no event horizon, i.e. black holes do not exist. Escape of energy and information is possible. Flat space-time theory of gravitation and quantum mechanics do not contradict to one another.展开更多
The scalar-free black hole could be unstable against the scalar field perturbation when it is coupled to a Gauss–Bonnet(GB)invariant in a special form.It is known that the tachyonic instability in this scenario is tr...The scalar-free black hole could be unstable against the scalar field perturbation when it is coupled to a Gauss–Bonnet(GB)invariant in a special form.It is known that the tachyonic instability in this scenario is triggered by the sufficiently strong GB coupling.In this paper,we focus on the time domain analysis of massive scalar field perturbation around the Schwarzschild de-Sitter black hole in Einstein-scalar–Gauss–Bonnet gravity.By analyzing the scalar field propagation,we find that the scalar field will finally grow when the GB coupling is large enough.This could lead to the instability of the background black hole.Furthermore,we demonstrate how the mass of the scalar field and the GB coupling strength affect the onset of tachyonic instability.展开更多
文摘This paper presents a novel framework for understanding time as an emergent phenomenon arising from quantum information dynamics. We propose that the flow of time and its directional arrow are intrinsically linked to the growth of quantum complexity and the evolution of entanglement entropy in physical systems. By integrating principles from quantum mechanics, information theory, and holography, we develop a comprehensive theory that explains how time can emerge from timeless quantum processes. Our approach unifies concepts from quantum mechanics, general relativity, and thermodynamics, providing new perspectives on longstanding puzzles such as the black hole information paradox and the arrow of time. We derive modified Friedmann equations that incorporate quantum information measures, offering novel insights into cosmic evolution and the nature of dark energy. The paper presents a series of experimental proposals to test key aspects of this theory, ranging from quantum simulations to cosmological observations. Our framework suggests a deeply information-theoretic view of the universe, challenging our understanding of the nature of reality and opening new avenues for technological applications in quantum computing and sensing. This work contributes to the ongoing quest for a unified theory of quantum gravity and information, potentially with far-reaching implications for our understanding of space, time, and the fundamental structure of the cosmos.
基金Supported by Chinese National Natural Science Foundation(41001138)National Science and Technology Supporting Program(2009BADB3B04)~~
文摘[Objective] The aim was to investigate and reveal effect of measurement time on emission flux of CO2 and N2O to ensure the optimum time of emission flux, in order to provide scientific reference for emission reduction of greenhouse gas in black soil region. [Method] Based on experiment of long-term fertilizer location in black soil region, the paper studied on daily dynamic variation of CO2 and N2O discharge in 3 key growth periods (booting stage, grain-filling stage and mature stage) to reveal differences of CO2 and N2O emission flux in different times. [Result] Daily variations of CO2 and N2O emission flux were large, from 205 mg/(m2·h) to 552 mg/(m2·h) for CO2 and from 51 h to 295 μg/(m2·h) for N2O. Trend of CO2 discharge in different growth times showed a unimodal curve, and the peak was at noon of 12:00 and the peak valley was at 3:00 am; discharge of N2O was small in day time at booting stage and large at night. Regardless of rice growth period effect on CO2 and N2O emission flux, representative time of CO2 discharge was 6:00-8:00 or 16:00-21:00; and time of N2O was 8:00-10:00 or 16:00-21:00; if CO2 and N2O emission fluxes were measured simultaneously, the optimum time was 16:00-18:00; if the measurement was started during 9:00-12:00, correction coefficients of CO2 and N2O were 0.81 and 0.90, respectively. [Conclusion] The result provided scientific reference for reduction of greenhouse gas emission in black soil region.
基金supported by the National Natural Science Foundation of China (Grant No. 10873004)the Program for Excellent Talents in Hunan Normal University (Grant No. ET10803)+3 种基金the State Key Development Program for Basic Research Project of China(Grant No. 2010CB832803)the Key Project of the National Natural Science Foundation of China (Grant No. 10935013)the Constructing Program of the National Key Disciplinethe Program for Changjiang Scholars and Innovative Research Teamin University (Grant No. IRT0964)
文摘Recently Malihe Heydari-Fard obtained a spherically symmetric exterior black hole solution in the brane-world scenario, which can be used to explain the galaxy rotation curves without postulating dark matter. By analysing the particle effective potential, we have investigated the time-like geodesic structure of the spherically symmetric black hole in the brane-world. We mainly take account of how the cosmological constant α and the stellar pressure β affect the time-like geodesic structure of the black hole. We find that the radial particle falls to the singularity from a finite distance or plunges into the singularity, depending on its initial conditions. But the non-radial time-like geodesic structure is more complex than the radial case. We find that the particle moves on the bound orbit or stable (unstable) circle orbit or plunges into the singularity, or reflects to infinity, depending on its energy and initial conditions. By comparing the particle effective potential curves for different values of the stellar pressureβ and the cosmological constant α, we find that the stellar pressure parameter β does not affect the time-like geodesic structure of the black hole, but the cosmological constant a has an impact on its time-like geodesic structure.
文摘Black cumin (Nigella sativa L.;Family-Ranunculaceae) is an important spice crop. Mature seeds are consumed for edible and medical purposes and also used as a food additive and flavour. Seed of black cumin has great potentiality as spice crop due to nutritive and medicinal values. The experiments were carried out at Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur during 2011 to 2012 to determine optimum planting time for seed production of black cumin. The experiment was two factorials. Factor A: 4 genotypes were V1: Exotic, Iran;V2: BARI kalozira-1;V3: Local, Faridpur and V4: Local, Natore. Factor B: sowing date: D1: 16 October;D2: 1 November;D3: 16 November and D4: 1 December. Therefore, treatment combinations were 16 in total. So, in 3 replications total plot was 48. Result revealed that significantly the highest 2.37 t/ha in V1, followed by V2 (1.96 t/ha). V2 and V3 (1.97 t/ha) were statistically similar and maximum yield was obtained from D2 (2.65 t/ha). In combined effect, maximum yield 3.00 t/ha was obtained in V1D2.. Investigation on time of sowing revealed that performance of black cumin was better in earlier sowings (16 October, 1 November) than later ones. The highest yield (4g plant-1;2.65 tha-1) was obtained when the crop was sown on 1 November. Among the genotypes, the exotic one with sowing in 1 November gave the highest seed yield (4.54 g·plant-1;3.00 t·ha-1).
文摘Through the gauge field theory, we obtain the solution of the DBI-AdS black hole, In the meantime, according to the relations between the action and the grand partition function, we obtain the grand partition function in the DBI-AdS black hole. The temperature and the potential of the DBI-AdS black hole are gained from differential of the grand partition function. With the thermodynamic relations, other thermodynamics are also obtained. The solution and the thermodynamics of the DBI-AdS black hole are turned out that they can reduce to the case of a charged black hole in four-dimensional spacetimes.
文摘We find that π represents dual attributes. One is within the purely mathematical domain and can be derived for example, from infinite series, among several other methods. The other is within a 2D geometric-physical domain. This paper analyzes several physical constants from an analogous perspective where they are defined solely by mathematical and 2D geometric properties independent of any actual physical scaling data. The constants are evaluated as natural unit frequency equivalents of the neutron, electron, Bohr radius, Rydberg constant, Planck’s constant, Planck time, a Black hole with a Schwarzschild radius, the distance light travels in one time unit;and the fine structure constant. These constants are defined within two inter-related harmonic domains. In the linear domain, the ratios of the frequency equivalents of the Rydberg constant, Bohr radius, electron;and the fine structure constant are related to products of 2 and π. In the power law domain, their partial harmonic fraction powers, and the integer fraction powers of the fundamental frequency for Planck time are known. All of the constants are then derived at the point where a single fundamental frequency simultaneously fulfills both domains independent of any direct physical scale data. The derived values relative errors from the known values range from 10-3 to 10-1 supporting the concept and method.
文摘Up to now, cosmology metrics have been based on Einstein relativity, established in 1905. Hubble has discovered the correlation between redshift and distance. Cosmology interprets the redshift as an expansion effect a(t) through the ΛCDM model. We have proposed a new theory to explain Hubble law. The theory has been validated against observation data. It proposes a new approach of time which introduces the cosmic time tc. Cosmic time is an absolute reference to universe. It is zero at the edge with tc = 0, tc = T at the observer position and tc = s for any source between the edge and the observer, with T > s > 0. This theory acts like the relativity of space-time. The redshift is interpreted as a perspective parameter p(tc) = tc/T. Using gravitation, it is the Einstein effect applied to the uni-verse. This paper comments and interprets further consequences of this new theory. We emphasize the difference between duration (as usually used in classical cosmologic metrics) and the cosmic time tc as a notion of date. It induces two related effects: relativity of speed of light and time stretching. We explain why the cosmological standard model is not well suited to describe the Hubble law, to describe the universe. We also explain why gravitation and temperature increase when going from the center to the edge of the universe, when going from present to birth. The model has no use of black energy. As a consequence, the universe is seen as a black hole created by the cosmic time shock wave when tc = 0.
文摘Intrinsic time quantum geometrodynamics is a formulation of quantum gravity naturally adapted to 3 + 1 dimensions. In this paper we construct its analogous 2 + 1 formulation, taking note of the mathematical structures which are preserved. We apply the resulting construction to convert the BTZ black hole metric to ITQG framework. We then modify the BTZ black hole in order to investigate the existence of the P-V criticality in ITQG theory.
文摘A result from Kieffer, as outlined at the beginning of the article identifies two different candidates for initial time steps, delta t. We assert that this difference in time steps may be related to a specific early universe Lorentz Violation. The author asserts that the existence of early universe Lorentz violation in turn is assisting in a breakup of primordial black holes. And that also has a tie into Kieffer different time steps as outlined. And the wrap up is given in the final part of this document.
文摘Static, spherically symmetric bodies are studied by the use of flat space-time theory of gravitation. In empty space a singularity at a Euclidean distance from the centre can exist. But the radius of this singular sphere is smaller than the radius of the body. Hence, there is no event horizon, i.e. black holes do not exist. Escape of energy and information is possible. Flat space-time theory of gravitation and quantum mechanics do not contradict to one another.
基金partly supported by Natural Science Foundation of China under Grant No.12375054the Natural Science Foundation of Jiangsu Province under Grant No.BK20211601。
文摘The scalar-free black hole could be unstable against the scalar field perturbation when it is coupled to a Gauss–Bonnet(GB)invariant in a special form.It is known that the tachyonic instability in this scenario is triggered by the sufficiently strong GB coupling.In this paper,we focus on the time domain analysis of massive scalar field perturbation around the Schwarzschild de-Sitter black hole in Einstein-scalar–Gauss–Bonnet gravity.By analyzing the scalar field propagation,we find that the scalar field will finally grow when the GB coupling is large enough.This could lead to the instability of the background black hole.Furthermore,we demonstrate how the mass of the scalar field and the GB coupling strength affect the onset of tachyonic instability.