With the continuous development of new energy generation technology and the increasingly complex power grid environment,the traditional black start scheme cannot meet the requirements of today’s power grid in order t...With the continuous development of new energy generation technology and the increasingly complex power grid environment,the traditional black start scheme cannot meet the requirements of today’s power grid in order to ensure the stable operation of the power system can be restored quickly in the face of large power outages,so a more complete black start scheme needs to be developed to cope with the new power system.With the development of energy storage technology,the limitations of the traditional black-start scheme can be solved by new energy farms with energy storage configuration.Therefore,this paper investigates the problems faced by black-start,the key technologies of energy storage assisted new energy black-start,and introduces the research related to new energy black-start technology to provide reference for future research and application of new energy black-start.展开更多
With the increasing deployment of renewable energy-based power generation plants,the power system is becoming increasingly vulnerable due to the intermittent nature of renewable energy,and a blackout can be the worst ...With the increasing deployment of renewable energy-based power generation plants,the power system is becoming increasingly vulnerable due to the intermittent nature of renewable energy,and a blackout can be the worst scenario.The current auxiliary generators must be upgraded to energy sources with substantially high power and storage capacity,a short response time,good profitability,and minimal environmental concern.Difficulties in the power restoration of renewable energy generators should also be addressed.The different energy storage methods can store and release electrical/thermal/mechanical energy and provide flexibility and stability to the power system.Herein,a review of the use of energy storage methods for black start services is provided,for which little has been discussed in the literature.First,the challenges that impede a stable,environmentally friendly,and cost-effective energy storage-based black start are identified.The energy storagebased black start service may lack supply resilience.Second,the typical energy storage-based black start service,including explanations on its steps and configurations,is introduced.Black start services with different energy storage technologies,including electrochemical,thermal,and electromechanical resources,are compared.Results suggest that hybridization of energy storage technologies should be developed,which mitigates the disadvantages of individual energy storage methods,considering the deployment of energy storage-based black start services.展开更多
Synchronous condensers(SCs)are generally used at the receiving-end stations of ultra-high-voltage direct current(UHVDC)transmission systems due to their strong reactive power support and flexible regulation of reactiv...Synchronous condensers(SCs)are generally used at the receiving-end stations of ultra-high-voltage direct current(UHVDC)transmission systems due to their strong reactive power support and flexible regulation of reactive power according to the interconnected grids operating conditions.In this paper,different starting control schemes of a SC integrated power grid are investigated providing four main contributions:1)The principle of reactive power support of the SC on the interconnected power grid is analytically studied,providing the establishment of mathematical models.2)Four different starting control schemes are developed for the initialization and SC integration,i.e.in Scheme 1,a preset initial falling speed is directly utilized without initialization;in Scheme 2,a black start sequential control approach with a static frequency converter(SFC)is proposed;in Scheme 3,PI/PD/PID controllers are respectively applied for the excitation device at the speed-falling stage;in Scheme 4,a pre-insertion approach of an energy absorption component with R/L/RL is utilized to suppress the surges at the SC integration instant.3)The dynamic behaviors of four different starting schemes at specific operating stages are evaluated.4)The success rate of SC integration is analyzed to evaluate starting control performance.Performance of the SC interconnected system with four different starting control schemes is evaluated in the timedomain simulation environment PSCAD/EMTDC^(TM).The results prove the superiority of the proposed starting control approach in Scheme 4.展开更多
Solid-state transformer-based smart transformer(ST)can provide the dc connectivity and advanced services to improve the grid performance and to increase the penetration of the power electronics interfaced resources(e....Solid-state transformer-based smart transformer(ST)can provide the dc connectivity and advanced services to improve the grid performance and to increase the penetration of the power electronics interfaced resources(e.g.,distributed generators and electric vehicle charging stations)in modern electricity distribution grids.Since the ST is a new and effective paradigm of the electricity grid evolution to well understand the ST,this paper systematically presents the basic architecture and the typical control schemes of the ST and then the advanced services that ST can provide to improve the electricity grids performances in terms of the power flow control,power quality improvement,active damping and active contribution to improve distribution grid resilience by means of enabling autonomous microgrids operation as well as launching a restoration procedure following a general blackout.展开更多
基金Supported by Joint Foundation of Natural Science Foundation of Jilin Province(No.YDZJ202101ZYTS152).
文摘With the continuous development of new energy generation technology and the increasingly complex power grid environment,the traditional black start scheme cannot meet the requirements of today’s power grid in order to ensure the stable operation of the power system can be restored quickly in the face of large power outages,so a more complete black start scheme needs to be developed to cope with the new power system.With the development of energy storage technology,the limitations of the traditional black-start scheme can be solved by new energy farms with energy storage configuration.Therefore,this paper investigates the problems faced by black-start,the key technologies of energy storage assisted new energy black-start,and introduces the research related to new energy black-start technology to provide reference for future research and application of new energy black-start.
基金financially supported by the UK Engineering and Physical Sciences Research Council(Nos.EP/S001905/1,EP/S032622/1,and EP/N032888/1)the Jiangsu Provincial Department of Science and Technology,China(Nos.BZ2019071 and BZ2020076)。
文摘With the increasing deployment of renewable energy-based power generation plants,the power system is becoming increasingly vulnerable due to the intermittent nature of renewable energy,and a blackout can be the worst scenario.The current auxiliary generators must be upgraded to energy sources with substantially high power and storage capacity,a short response time,good profitability,and minimal environmental concern.Difficulties in the power restoration of renewable energy generators should also be addressed.The different energy storage methods can store and release electrical/thermal/mechanical energy and provide flexibility and stability to the power system.Herein,a review of the use of energy storage methods for black start services is provided,for which little has been discussed in the literature.First,the challenges that impede a stable,environmentally friendly,and cost-effective energy storage-based black start are identified.The energy storagebased black start service may lack supply resilience.Second,the typical energy storage-based black start service,including explanations on its steps and configurations,is introduced.Black start services with different energy storage technologies,including electrochemical,thermal,and electromechanical resources,are compared.Results suggest that hybridization of energy storage technologies should be developed,which mitigates the disadvantages of individual energy storage methods,considering the deployment of energy storage-based black start services.
基金supported by the National Natural Science Foundation of China under Grant 51807091the Natural Science Foundation of Jiangsu Province BK20180478+2 种基金the China Postdoctoral Science Foundation under Grant 2019M661846the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources under Grant LAPS20016Engineering and Physical Sciences Research Council under Grant EP/N032888/1.
文摘Synchronous condensers(SCs)are generally used at the receiving-end stations of ultra-high-voltage direct current(UHVDC)transmission systems due to their strong reactive power support and flexible regulation of reactive power according to the interconnected grids operating conditions.In this paper,different starting control schemes of a SC integrated power grid are investigated providing four main contributions:1)The principle of reactive power support of the SC on the interconnected power grid is analytically studied,providing the establishment of mathematical models.2)Four different starting control schemes are developed for the initialization and SC integration,i.e.in Scheme 1,a preset initial falling speed is directly utilized without initialization;in Scheme 2,a black start sequential control approach with a static frequency converter(SFC)is proposed;in Scheme 3,PI/PD/PID controllers are respectively applied for the excitation device at the speed-falling stage;in Scheme 4,a pre-insertion approach of an energy absorption component with R/L/RL is utilized to suppress the surges at the SC integration instant.3)The dynamic behaviors of four different starting schemes at specific operating stages are evaluated.4)The success rate of SC integration is analyzed to evaluate starting control performance.Performance of the SC interconnected system with four different starting control schemes is evaluated in the timedomain simulation environment PSCAD/EMTDC^(TM).The results prove the superiority of the proposed starting control approach in Scheme 4.
基金the German Federal Ministry of Education and Research(BMBF)within the Kopernikus Project ENSURE"New ENergy grid StructURes for the German Energiewende"(03SFK1I0-2)。
文摘Solid-state transformer-based smart transformer(ST)can provide the dc connectivity and advanced services to improve the grid performance and to increase the penetration of the power electronics interfaced resources(e.g.,distributed generators and electric vehicle charging stations)in modern electricity distribution grids.Since the ST is a new and effective paradigm of the electricity grid evolution to well understand the ST,this paper systematically presents the basic architecture and the typical control schemes of the ST and then the advanced services that ST can provide to improve the electricity grids performances in terms of the power flow control,power quality improvement,active damping and active contribution to improve distribution grid resilience by means of enabling autonomous microgrids operation as well as launching a restoration procedure following a general blackout.