Whole-cell catalysis,which utilizes enzymes expressed in whole organism(e.g.bacteria and fungi)as the catalyst,is a specific mode of biocatalysis.Compared with pure enzyme catalysis,the catalysis with whole-cell catal...Whole-cell catalysis,which utilizes enzymes expressed in whole organism(e.g.bacteria and fungi)as the catalyst,is a specific mode of biocatalysis.Compared with pure enzyme catalysis,the catalysis with whole-cell catalysts is more cost-effective.However,in the process of whole-cell catalysis,heat treatment is often necessary due to the high optimum temperature of the enzyme.To enable efficient industrial application of whole-cell catalysis,an environmental friendly heating approach is highly desired.Inspired by the light harvest by blackbody materials,in this paper,we introduced a photothermal approach for harnessing the photon energy for enhanced whole-cell catalysis.A blackbody porous sponge(BPS)with excellent photothermal conversion efficiency was prepared as a bioreactor.Escherichia coli expressed with a thermophilic enzyme(β-glucosidase)was utilized as a model whole-cell catalyst.Moreover,the photothermal properties of the BPS and lightassisted whole-cell catalysis were systematically investigated,demonstrating promising application prospects.展开更多
基金financially supported by the National Natural Science Foundation of China(NSFC)(22007083)Zhejiang Provincial Innovation Center of Advanced Textile Technology and the Fundamental Research Funds of Shaoxing Keqiao Research Institute of Zhejiang Sci-Tech University(KYY2022004C)the Fundamental Research Funds of Shengzhou Innovation Research Institute of Zhejiang SciTech University(SYY2023B000004)
文摘Whole-cell catalysis,which utilizes enzymes expressed in whole organism(e.g.bacteria and fungi)as the catalyst,is a specific mode of biocatalysis.Compared with pure enzyme catalysis,the catalysis with whole-cell catalysts is more cost-effective.However,in the process of whole-cell catalysis,heat treatment is often necessary due to the high optimum temperature of the enzyme.To enable efficient industrial application of whole-cell catalysis,an environmental friendly heating approach is highly desired.Inspired by the light harvest by blackbody materials,in this paper,we introduced a photothermal approach for harnessing the photon energy for enhanced whole-cell catalysis.A blackbody porous sponge(BPS)with excellent photothermal conversion efficiency was prepared as a bioreactor.Escherichia coli expressed with a thermophilic enzyme(β-glucosidase)was utilized as a model whole-cell catalyst.Moreover,the photothermal properties of the BPS and lightassisted whole-cell catalysis were systematically investigated,demonstrating promising application prospects.