A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying...A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying fiexural stiffness and an edge crack, the SSEM is used to detect the crack location effectively by numerical modal shapes. As a complicated beam, the glass fiber-reinforced composite model of a wind turbine blade is studied based on an experimental modal analysis. The SSEM is used to calculate the damage index from the measured modal parameters and locate the damage position in the blade model successfully. The results indicate that the SSEM based on the modal shapes can be used to detect the damages in complicated beams or beam-like structures for engineering applications.展开更多
The Euler-Bernoulli beam model coupled with the sectional properties obtained by the variational asymptotic beam sectional analysis(VABS)method is used to construct the blade structure model.Combined the aerodynamic l...The Euler-Bernoulli beam model coupled with the sectional properties obtained by the variational asymptotic beam sectional analysis(VABS)method is used to construct the blade structure model.Combined the aerodynamic loads calculated by unsteady blade element momentum model with a dynamic inflow and the dynamic stall correction,the dynamics equations of blade are built.The Newmark implicit algorithm is used to solve the dynamics equations.Results of the sectional properties and blade structure model are compared with the multi-cell beam method and the ANSYS using shell elements.It is proved that the method is effective with high precision.Moreover,the effects on the aeroelastic response caused by bend-twist coupling are analyzed.Torsional direction is deflected toward the upwind direction as a result of coupling effects.The aerodynamic loads and the displacement are reduced.展开更多
基金supported by the National Basic Research Program of China (973 Program)(No. 2007CB714603)
文摘A damage detection method for complicated beam-like structures is proposed based on the subsection strain energy method (SSEM), and its applicability condition is introduced. For a beam with the continuously varying fiexural stiffness and an edge crack, the SSEM is used to detect the crack location effectively by numerical modal shapes. As a complicated beam, the glass fiber-reinforced composite model of a wind turbine blade is studied based on an experimental modal analysis. The SSEM is used to calculate the damage index from the measured modal parameters and locate the damage position in the blade model successfully. The results indicate that the SSEM based on the modal shapes can be used to detect the damages in complicated beams or beam-like structures for engineering applications.
基金supported jointly by the National Basic Research Program of China(″973″Program)(No.2014CB046200)the Natural Science Foundation of Jiangsu Province(No.BK2014059)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe National Natural Science Foundation of China(No.11172135)
文摘The Euler-Bernoulli beam model coupled with the sectional properties obtained by the variational asymptotic beam sectional analysis(VABS)method is used to construct the blade structure model.Combined the aerodynamic loads calculated by unsteady blade element momentum model with a dynamic inflow and the dynamic stall correction,the dynamics equations of blade are built.The Newmark implicit algorithm is used to solve the dynamics equations.Results of the sectional properties and blade structure model are compared with the multi-cell beam method and the ANSYS using shell elements.It is proved that the method is effective with high precision.Moreover,the effects on the aeroelastic response caused by bend-twist coupling are analyzed.Torsional direction is deflected toward the upwind direction as a result of coupling effects.The aerodynamic loads and the displacement are reduced.