The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on ...The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades.展开更多
随着海上风电的蓬勃发展,运维工作越来越成为突出问题。风电叶片作为风电大尺寸关键构件,其运维对机组至关重要。本文针对海上风机叶片人工运维检测存在的高风险、低效率和低精度等问题,提出了一种基于改进YOLOv5x(You Only Look Once v...随着海上风电的蓬勃发展,运维工作越来越成为突出问题。风电叶片作为风电大尺寸关键构件,其运维对机组至关重要。本文针对海上风机叶片人工运维检测存在的高风险、低效率和低精度等问题,提出了一种基于改进YOLOv5x(You Only Look Once version 5x)算法的海上风机叶片缺陷机器视觉检测系统。该方法引入了卷积块注意力机制(Convolutional Block Attention Module,CBAM),以增强神经网络对输入特征的感知能力,使用智慧交并比(Wise Intersection over Union,WIoU)作为损失函数,减少人工标注数据的误差,提高目标检测的准确性。基于海上风机叶片缺陷数据对模型进行训练,将训练好的模型封装成海上风机叶片机器视觉识别系统。试验结果显示,改进后的YOLOv5x算法,相比于原有的YOLOv5x,平均精度均值(mean Average Precision,mAP)提高了4.71%,准确率(Precision)提高了7.48%,且能满足实时性需求。展开更多
基金supported by the National Science Foundation of China(Grant Nos.52068049 and 51908266)the Science Fund for Distinguished Young Scholars of Gansu Province(No.21JR7RA267)Hongliu Outstanding Young Talents Program of Lanzhou University of Technology.
文摘The accumulation of defects on wind turbine blade surfaces can lead to irreversible damage,impacting the aero-dynamic performance of the blades.To address the challenge of detecting and quantifying surface defects on wind turbine blades,a blade surface defect detection and quantification method based on an improved Deeplabv3+deep learning model is proposed.Firstly,an improved method for wind turbine blade surface defect detection,utilizing Mobilenetv2 as the backbone feature extraction network,is proposed based on an original Deeplabv3+deep learning model to address the issue of limited robustness.Secondly,through integrating the concept of pre-trained weights from transfer learning and implementing a freeze training strategy,significant improvements have been made to enhance both the training speed and model training accuracy of this deep learning model.Finally,based on segmented blade surface defect images,a method for quantifying blade defects is proposed.This method combines image stitching algorithms to achieve overall quantification and risk assessment of the entire blade.Test results show that the improved Deeplabv3+deep learning model reduces training time by approximately 43.03%compared to the original model,while achieving mAP and MIoU values of 96.87%and 96.93%,respectively.Moreover,it demonstrates robustness in detecting different surface defects on blades across different back-grounds.The application of a blade surface defect quantification method enables the precise quantification of dif-ferent defects and facilitates the assessment of risk levels associated with defect measurements across the entire blade.This method enables non-contact,long-distance,high-precision detection and quantification of surface defects on the blades,providing a reference for assessing surface defects on wind turbine blades.
文摘随着海上风电的蓬勃发展,运维工作越来越成为突出问题。风电叶片作为风电大尺寸关键构件,其运维对机组至关重要。本文针对海上风机叶片人工运维检测存在的高风险、低效率和低精度等问题,提出了一种基于改进YOLOv5x(You Only Look Once version 5x)算法的海上风机叶片缺陷机器视觉检测系统。该方法引入了卷积块注意力机制(Convolutional Block Attention Module,CBAM),以增强神经网络对输入特征的感知能力,使用智慧交并比(Wise Intersection over Union,WIoU)作为损失函数,减少人工标注数据的误差,提高目标检测的准确性。基于海上风机叶片缺陷数据对模型进行训练,将训练好的模型封装成海上风机叶片机器视觉识别系统。试验结果显示,改进后的YOLOv5x算法,相比于原有的YOLOv5x,平均精度均值(mean Average Precision,mAP)提高了4.71%,准确率(Precision)提高了7.48%,且能满足实时性需求。