Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In suc...Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In such a range the maximum static(gauge)pressure at the inlet changes from−2280 Pa to 382 Pa,and the minimum static pressure decreases from−3389 Pa to−8000 Pa.As for the axial intermediate flow surface,one low pressure zone is located at the junction of the suction surface and the hub,another is located at the suction surface close to the casing position.At the outlet boundary,the low pressure is negative and decreases from−1716 Pa to−4589 Pa.The sound pressure level of the inlet and outlet noise tends to increase monotonously by 11.6 dB and 7.3 dB,respectively.The acoustic energy of discrete noise is always higher than that of broadband noise regardless of whether the inlet or outlet flow surfaces are considered.The acoustic energy ratio of discrete noise at the inlet tends to increase from 0.78 to 0.93,while at the outlet it first decreases from 0.79 to 0.73 and then increases to 0.84.展开更多
For a certain type of transonic axial fan, the flow field of a fan rotor with splitter blade was computed by numerical simulation, and the shape of the rotor was modified. The effects of different circumferential dist...For a certain type of transonic axial fan, the flow field of a fan rotor with splitter blade was computed by numerical simulation, and the shape of the rotor was modified. The effects of different circumferential distributions concerning the splitter cascades upon the aerodynamic performance were investigated. The studies show that the optimum splitter cascade is not very close to the suction side of main blade. The load between the main blade and the splitter blade can be soundly distributed in terms of the adjustment of circumferential position of the splitter blade. The best aerodynamic performance can be successfully obtained according to the optimum shape of the expanding fluid channel reasonably formed by the splitter blade and the main blade.展开更多
To get an insight into the occurrence and the mechanism of flow unsteadiness in the tip region of centrifugal compressor impellers, the flow in Krain’s impeller is investigated by using both steady and unsteady RAN...To get an insight into the occurrence and the mechanism of flow unsteadiness in the tip region of centrifugal compressor impellers, the flow in Krain’s impeller is investigated by using both steady and unsteady RANS solver techniques. It is found that the flow unsteadiness on the pressure side is much stronger than that on the suction side. The periodical frequency of the unsteady flow is around half of the blade passing frequency. The originating mechanism of the flow unsteadiness is illustrated with the time-dependent tip leakage flow and blade loading at the tip region. Due to the blockage caused by the joint effects of broken-downed tip leakage vortex, separated fluids and tip leakage flow at downstream, a low pressure region is formed on the pressure side, consequently the blade loadings is altered. In turn, the changed blade loadings will alter the intensity of tip leakage flow. Such alternative behavior finally results in the periodic process. By comparing the calculated flow field in the cases of single-passage and four-passage models, it is confirmed that the investigated flow unsteadiness is confined in each single passage, as no phase differences are found in the model of four passages. This is different from the situation in axial compressor when the rotating instability is encountered. The flow unsteadiness only occurs at the working conditions with small mass flow rates, and the oscillation intensity will be enhanced with the decrease of mass flow rate. When the mass flow rate is too small, the flow unsteadiness in a single passage may trigger rotating stall, as the disturbance propagates in the circumferential direction.展开更多
基金supported by Key Research and Development Project of Shandong Province[2019GSF109084]Young Scholars Program of Shandong University[2018WLJH73].
文摘Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In such a range the maximum static(gauge)pressure at the inlet changes from−2280 Pa to 382 Pa,and the minimum static pressure decreases from−3389 Pa to−8000 Pa.As for the axial intermediate flow surface,one low pressure zone is located at the junction of the suction surface and the hub,another is located at the suction surface close to the casing position.At the outlet boundary,the low pressure is negative and decreases from−1716 Pa to−4589 Pa.The sound pressure level of the inlet and outlet noise tends to increase monotonously by 11.6 dB and 7.3 dB,respectively.The acoustic energy of discrete noise is always higher than that of broadband noise regardless of whether the inlet or outlet flow surfaces are considered.The acoustic energy ratio of discrete noise at the inlet tends to increase from 0.78 to 0.93,while at the outlet it first decreases from 0.79 to 0.73 and then increases to 0.84.
文摘For a certain type of transonic axial fan, the flow field of a fan rotor with splitter blade was computed by numerical simulation, and the shape of the rotor was modified. The effects of different circumferential distributions concerning the splitter cascades upon the aerodynamic performance were investigated. The studies show that the optimum splitter cascade is not very close to the suction side of main blade. The load between the main blade and the splitter blade can be soundly distributed in terms of the adjustment of circumferential position of the splitter blade. The best aerodynamic performance can be successfully obtained according to the optimum shape of the expanding fluid channel reasonably formed by the splitter blade and the main blade.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51236006, 51576153)
文摘To get an insight into the occurrence and the mechanism of flow unsteadiness in the tip region of centrifugal compressor impellers, the flow in Krain’s impeller is investigated by using both steady and unsteady RANS solver techniques. It is found that the flow unsteadiness on the pressure side is much stronger than that on the suction side. The periodical frequency of the unsteady flow is around half of the blade passing frequency. The originating mechanism of the flow unsteadiness is illustrated with the time-dependent tip leakage flow and blade loading at the tip region. Due to the blockage caused by the joint effects of broken-downed tip leakage vortex, separated fluids and tip leakage flow at downstream, a low pressure region is formed on the pressure side, consequently the blade loadings is altered. In turn, the changed blade loadings will alter the intensity of tip leakage flow. Such alternative behavior finally results in the periodic process. By comparing the calculated flow field in the cases of single-passage and four-passage models, it is confirmed that the investigated flow unsteadiness is confined in each single passage, as no phase differences are found in the model of four passages. This is different from the situation in axial compressor when the rotating instability is encountered. The flow unsteadiness only occurs at the working conditions with small mass flow rates, and the oscillation intensity will be enhanced with the decrease of mass flow rate. When the mass flow rate is too small, the flow unsteadiness in a single passage may trigger rotating stall, as the disturbance propagates in the circumferential direction.