期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Lifetime Prediction of Wind Turbine Blade Based on Full-Scale Fatigue Testing 被引量:1
1
作者 寇海霞 安宗文 +1 位作者 马强 郭旭 《Journal of Shanghai Jiaotong university(Science)》 EI 2020年第6期755-761,共7页
In order to predict the lifetime of products appropriately with long lifetime and high reliability,the accelerated degradation testing(ADT)has been proposed.Composite wind turbine blade is one of the most important co... In order to predict the lifetime of products appropriately with long lifetime and high reliability,the accelerated degradation testing(ADT)has been proposed.Composite wind turbine blade is one of the most important components in wind turbine system.Its fatigue cycle is very long in practice.A full-scale fatigue testing is usually used to verify the design of a new blade.In general,the full-scale fatigue testing of blade is accelerated on the basis of the damage equivalent principle.During the full-scale fatigue test ing,blade is subjected to higher testing load than normal operat ing conditions;consequently,the performance degradation of the blade is hastened over time.The full-scale fatigue testing of blade is regarded as a special ADT.According to the fatigue failure criterion,we choose blade stiffness as the characteristic quantity of the blade performance,and propose an accelerated model(AM)for blade on the basis of the theories of ADT.Then,degradation path of the blade stiffness is modeled by using Gamma process.Finally,the lifet ime prediction of full-scale megawatt(MW)blade is conducted by combining the proposed AM and blade stiffness degradation model.The prediction results prove the reasonability and validity of this study.This can supply a new approach to predict the lifetime of the full-scale MW blade. 展开更多
关键词 composite wind turbine blade accelerated degradation testing(ADT) acelerated model(AM) full-scale fatigue testing blade stiffness lifet ime prediction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部