期刊文献+
共找到625篇文章
< 1 2 32 >
每页显示 20 50 100
Aerodynamic Performance and Aeroacoustic Characteristics of Model Rotor with Anhedral Blade Tip in Hover 被引量:1
1
作者 Huang Shuilin Fan Feng +1 位作者 Yuan Mingchuan Sun Wei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第1期162-169,共8页
Experimental investigation on the aerodynamic performance and aeroacoustic characteristics of model rotors with different tip anhedral angles in hover are conducted in the paper.Three sets of model rotors with blade-t... Experimental investigation on the aerodynamic performance and aeroacoustic characteristics of model rotors with different tip anhedral angles in hover are conducted in the paper.Three sets of model rotors with blade-tip anhedral angle 0°(reference rotor),20°and 45°respectively are designed to analyze the influence of the anhedral angle on the hovering performance and aeroacoustics of rotor.In the environment of anechoic chamber,the hover experiments under the different collective pitch and blade numbers,are carried out to measure the figure of merit(FM),time history of sound pressure and sound pressure level(SPL)of the three rotor models.Based on test results,the comparison and analysis of hovering performance and aeroacoustic characteristics among the three rotor models have been done.Meanwhile,for the sake of analysis,the rotor wake and blade pressure distribution are simulated by means of computational fluid method(CFD).At last,some conclusions about the effects of blade-tip anhedral angle on the aerodynamic performance and aeroacoustic characteristics in hover are obtained.An anhedral blade tip can enhance the FM of the rotor,and decrease the rotor loads noise to some extent. 展开更多
关键词 HELICOPTER ROTOR anhedral blade-tip aerodynacmic performance aero-acoustic characteristics
下载PDF
Multi-probe linear fitting and time of arrival linear correction method to analyze blade vibration based on blade tip timing without once-per-revolution
2
作者 Sanqun REN Xiaorong XIANG +3 位作者 Qingjun ZHAO Weimin WANG Wei ZHAO Chuanlin ZHAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第1期290-310,共21页
Blade vibration monitoring can ensure the safe operation of aeroengine rotor blades.Among the methods of blade vibration monitoring,Blade Tip Timing(BTT)method has attracted more and more attention because of its adva... Blade vibration monitoring can ensure the safe operation of aeroengine rotor blades.Among the methods of blade vibration monitoring,Blade Tip Timing(BTT)method has attracted more and more attention because of its advantages of non-contact measurement.However,it is difficult to install the Once-Per-Revolution(OPR)probe in the confined space of aeroengine,and the failure and instability of the OPR signal will reduce the reliability of the blade vibration analysis results,which directly affects the accuracy of the blade vibration parameters identification.The Multi-Probe linear fitting and Time of Arrival(ToA)Linear Correction method based on the BTT(MP-LC-BTT)without OPR is proposed to reduce the errors of single probe linear fitting method for blade vibration displacement analysis.The proposed method can also correct the calculation error of blade vibration displacement due to the nonlinear change of rotation speed,which can improve the analysis accuracy of the blade vibration displacement.A new blade vibration model conforming to the actual vibration characteristics is established,and the effectiveness of the proposed method is verified by numerical simulation.Finally,the reliability and accuracy of the MP-LC-BTT method have been verified by the experiments which include two high-speed blade test-benches and an industrial axial fan.This method can be used in the actual aero-engine monitoring instead of the BTT method with OPR. 展开更多
关键词 blade tip Timing(BTT) Linear correction Multi-probe linear fitting Once-Per-Revolution(OPR) Rotor blades Vibration analysis
原文传递
Effects of Ribbed-Cavity Tip on the Blade Tip Aerothermal Performance in a High Pressure Turbine Stage
3
作者 DU Kun LI Huarong +1 位作者 SUNDEN Bengt LIU Cunliang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第2期800-811,共12页
For unshrouded blade tip,the high-temperature gas flows through the tip clearance by force of the lateral pressure difference.Thereby,the blade tip endures increasing thermal load.Furthermore,the conventional blade ti... For unshrouded blade tip,the high-temperature gas flows through the tip clearance by force of the lateral pressure difference.Thereby,the blade tip endures increasing thermal load.Furthermore,the conventional blade tip treatment cannot continuously provide protection for the deteriorating service environment.In the present study,aerothermal characteristics of the squealer blade tip with staggered ribs,partial squealer rim and different partial squealer rim thickness were investigated to explore the influences of ribbed-cavity tip on the tip heat transfer,leakage flow and turbine stage efficiency.The numerical results indicate that the ribbed-cavity tips are beneficial for the reduction of the blade tip thermal load and leakage flow.Among the present six blade tip designs,the minimal area-averaged heat transfer coefficient is obtained by the case with the staggered ribs and a deeper squealer rim,which is reduced by 31.41%relative to the squealer tip.Plus,the blade tip modification closer to leading edge or tip mid-chord region performs better than trailing edge in reducing the tip leakage flow. 展开更多
关键词 gas turbine tip leakage flow numerical simulation blade tip configuration
原文传递
Improved minimum variance distortionless response spectrum method for efficient and robust non-uniform undersampled frequency identification in blade tip timing
4
作者 Ruochen JIN Laihao YANG +3 位作者 Zhibo YANG Shaohua TIAN Guangrong TENG Xuefeng CHEN 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第4期165-181,共17页
The noncontact blade tip timing(BTT)measurement has been an attractive technology for blade health monitoring(BHM).However,the severe undersampled BTT signal causes a significant challenge for blade vibration paramete... The noncontact blade tip timing(BTT)measurement has been an attractive technology for blade health monitoring(BHM).However,the severe undersampled BTT signal causes a significant challenge for blade vibration parameter identification and fault feature extraction.This study proposes a novel method based on the minimum variance distortionless response(MVDR)of the direction of arrival(DoA)estimation for blade natural frequency estimation from the non-uniformly undersampled BTT signals.First,based on the similarity between the general data acquisition model for BTT and the antenna array model in DoA estimation,the circumferentially arranged probes on the casing can be regarded as a non-uniform linear array.Thus,BTT signal reconstruction is converted into the DoA estimation problem of the non-uniform linear array signal.Second,MVDR is employed to address the severe undersampling issue and recover the BTT undersampled signal.In particular,spatial smoothing is innovatively utilized to enhance the estimation of covariance matrix of the BTT signal to avoid ill-condition or singularity,while improving efficiency and robustness.Lastly,numerical simulation and experimental testing are employed to verify the validity of the proposed method.Monte Carlo simulation results suggest that the proposed method behaves better than conventional methods,especially under a lower signal-to-noise ratio condition.Experimental results indicate that the proposed method can effectively overcome the severe undersampling problem of BTT signal induced by physical limitations,and has a strong potential in the field of BHM. 展开更多
关键词 blade tip timing(BTT) frequency identification minimum variance distortionless response(MVDR) undersampled blade health monitoring(BHM)
原文传递
Numerical analysis on noise of rotor with unconventional blade tips based on CFD/Kirchhoff method 被引量:9
5
作者 Wang Bo Zhao Qijun +2 位作者 Xu Guohua Ye Liang Wang Junyi 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第3期572-582,共11页
A solver is developed aiming at efficiently predicting rotor noise in hover and forward flight. In this solver, the nonlinear near-field solutions are calculated by a hybrid approach which includes the Navier–Stokes ... A solver is developed aiming at efficiently predicting rotor noise in hover and forward flight. In this solver, the nonlinear near-field solutions are calculated by a hybrid approach which includes the Navier–Stokes and Euler equations based on a moving-embedded grid system and adaptive grid methodology. A combination of the third-order upwind scheme and flux-difference splitting scheme, instead of the second-order center-difference scheme which may cause larger wake dissipation, has been employed in the present computational fluid dynamics (CFD) method. The sound pressure data in the near field can be calculated directly by solving the Navier–Stokes equations, and the sound propagation can be predicted by the Kirchhoff method. A harmonic expansion approach is presented for rotor far-field noise prediction, which gives an analytical expression for the integral function in the Kirchhoff formula. As a result, the interpolation process is simplified and the efficiency and accuracy of the interpolation are improved. Then, the high-speed impulsive (HIS) noise of a helicopter rotor at different tip Mach numbers and on different observers is calculated and analyzed in hover and forward flight, which shows a highly directional characteristic of the rotor HIS noise with a maximum value in the rotor plane, and the HSI noise weakens rapidly with the increasing of the directivity angle. In order to investigate the effects of the rotor blade-tip shape on its aeroacoustic characteristics, four kinds of blade tips are designed and their noise characteristics have been simulated. At last, a new unconventional CLOR-II blade tip has been designed, and the noise characteristics of the presented CLOR-II model rotor have been simulated and measured compared to the reference rotors with a rectangular or swept-back platform blade tip. The results demonstrate that the unconventional CLOR-II blade tip can significantly reduce the HSI noise of a rotor. 展开更多
关键词 Aeroacoustics Computational fluid dynam- ics Helicopters KIRCHHOFF Rotors Unconventional blade tip
原文传递
Effect of blade tip winglet on the performance of a highly loaded transonic compressor rotor 被引量:8
6
作者 Han Shaobing Zhong Jingjun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第3期653-661,共9页
The tip leakage flow has an important influence on the performance of transonic com- pressor. Blade tip winglet has been proved to be an effective method to control the tip leakage flow in compressor, while the physic... The tip leakage flow has an important influence on the performance of transonic com- pressor. Blade tip winglet has been proved to be an effective method to control the tip leakage flow in compressor, while the physical mechanisms of blade tip winglet have been poorly understood. A numerical study for a highly loaded transonic compressor rotor has been conducted to understand the effect of varying the location of blade tip wing]et on the performance of the rotor. Two kinds of tip winglet were designed and investigated. The effects of blade tip winglet on the compressor over- all performance, stability and tip flow structure were presented and discussed, It is found that the interaction of the tip winglet with the flow in the tip region is different when the winglet is located at suction-side or pressure-side of the blade tip. Results indicate that the suction-side winglet (SW) is ineffective to improve the performance of compressor rotor. In addition, a significant stall range extension equivalent to 33.74% with a very small penalty in efficiency can be obtained by the pressure-side winglet (PW). An attempt has been made to explain the fundamental mechanisms of blade tip winglet in detail. 展开更多
关键词 blade tip winglet Numerical study Shock wave/tip leakage vor-tex interaction Stall range Tra asonic compressor rotor
原文传递
A novel none once per revolution blade tip timing based blade vibration parameters identification method 被引量:7
7
作者 Weimin WANG Xulong ZHANG +2 位作者 Dongfang HU Dengpeng ZHANG Paul ALLAIRE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第7期1953-1968,共16页
The vibration caused blade High Cycle Fatigue(HCF)is seriously affects the safety operation of turbomachinery especially for aero-engine.Thus,it is crucial important to identify the blade vibration parameters and then... The vibration caused blade High Cycle Fatigue(HCF)is seriously affects the safety operation of turbomachinery especially for aero-engine.Thus,it is crucial important to identify the blade vibration parameters and then evaluate the dynamic stress amplitude.Blade Tip Timing(BTT)method is one of the promising method to solve these problems.While,it need a high resolution Once Per Revolution(OPR)signal which is difficult to get for the aero-engine.Here,a Coupled Vibration Analysis(CVA)method for identifying blade vibration parameters by a none OPR BTT is proposed.The method assumes that every real blade has its own vibration performance at a given speed.Whereby,it can take any blade as the reference blade,and the other blades using the reference blade as the OPR for vibration displacement calculating and further parameter identifying.The proposed method is validated by numerical model.Also,experimental studies are carried out on a straight blade and a twisted three dimensional blade test rig as well as a large industrial axial compressor respectively.The results show that the proposed method can accurately identify the blade synchronous vibration parameters and quantitatively evaluate the mistuning in bladed disks,which lays a foundation for the reliability improvement of aero-engine. 展开更多
关键词 blade tip timing blade vibration Parameter identification Turbomachinery blades Vibration analysis
原文传递
Variable Clearance Characteristics of High Subsonic Compressor Cascades with Blade Tip Winglets 被引量:2
8
作者 WU Wanyang ZHONG Jingjun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第2期495-510,共16页
The gas turbine is the main power equipment for naval ship and special civil ship,while the compressor is one of the core structures of the gas turbine.The existing tip clearance could prevent the compressor blade and... The gas turbine is the main power equipment for naval ship and special civil ship,while the compressor is one of the core structures of the gas turbine.The existing tip clearance could prevent the compressor blade and casing collision.Therefore,the flow loss in the tip region caused by the tip clearance will degrade the performance of the compressor.To improve the variable clearance characteristics of the high subsonic compressor cascades,the cascades with tip clearances of 1%,2%and 3%chord length are studied through experimental measurements and numerical calculations.The research results prove that the pressure surface tip winglet can cause a significant improvement effect under most working conditions.If the blade tip clearance size is gradually increasing within a reasonable range,the improvement effect becomes more remarkable,and the optimal tip winglet case changes.When tip clearance is 1%chord length,the PTW1.0 case(the width of the pressure surface tip winglet is 1.0 time of the original tip)reduces the flow loss by 3.09%compared with the NTW case(No Tip Winglet).When tip clearance is 2%chord length,the flow loss of PTW1.5 case(the width of the pressure surface tip winglet is 1.5 times of the original tip)is reduced by 3.46%.When tip clearance is 3%chord length,all alternative tip winglets reduce the total pressure loss,and PTW2.0 case(the width of the pressure surface tip winglet is 2.0 times of the original tip)is the best choice,which has a 6.53%degree of improvement. 展开更多
关键词 high subsonic compressor blade tip winglet tip clearance pressure surface experimental measurement
原文传递
Experimental study of the effect of blade tip clearance and blade angle error on the performance of mixed-flow pump 被引量:13
9
作者 BING Hao CAO ShuLiang +1 位作者 HE ChengLian LU Li 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第2期293-298,共6页
The hydraulic performance test of the mixed-flow pump has been carried out through selecting different blade tip clearances and various blade angle errors.The ratio of the mixed-flow pump efficiency reduction and the ... The hydraulic performance test of the mixed-flow pump has been carried out through selecting different blade tip clearances and various blade angle errors.The ratio of the mixed-flow pump efficiency reduction and the blade tip clearance variation(η/δ) varies with the flow rate coefficient revealing a parabolic trend.An empirical equation has been developed for the mixed-flow pump model by parabolic fitting.For the same blade tip clearance variation δ,the mixed-flow pump efficiency reduction η increases rapidly as the flow rate rises.For any given flow rate,the efficiency,the head and the shaft power of the mixed-flow pump all decrease with the increase of the blade tip clearance.Among them,the efficiency reduction η varies approximately linearly with the blade tip clearance variation δ.When the angle of an individual blade of the mixed-flow pump has a deviation,the performance curves will move and change.These curves have consistent change directions with the performance curves under the condition of all the blades rotated at the same time,but have smaller offset and lower range of variation.When an individual blade angle error changes to ±2°,the optimal efficiency of the mixed-flow pump will have no significant difference.When the individual blade angle error increases to ±4°,the optimal efficiency will decrease by 1%. 展开更多
关键词 叶尖间隙 角度误差 混流泵 性能测试 叶片 实验 性能曲线 刀片式服务器
原文传递
Effect of blade tip geometry on tip leakage vortex dynamics and cavitation pattern in axial-flow pump 被引量:10
10
作者 SHI Lei ZHANG DeSheng +2 位作者 ZHAO RuiJie SHI WeiDong JIN YongXin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第10期1480-1493,共14页
A series of blade tip geometries, including original plain tip, rounded tip on the pressure side and diverging tip towards the suction side, were adopted to investigate the effect of blade geometry on tip leakage vort... A series of blade tip geometries, including original plain tip, rounded tip on the pressure side and diverging tip towards the suction side, were adopted to investigate the effect of blade geometry on tip leakage vortex dynamics and cavitation pattern in an axial-flow pump. On the basis of the computation, it clearly shows the flow structure in the clearance for different tip configurations by the detailed data of axial velocity and turbulent kinetic energy. The in-plain trajectory, in aspects of the angle between the blade suction side and vortex core and the initial point of tip leakage vortex, was presented using the maximum swirling strength method. The most striking feature is that the inception location of tip leakage vortex is delayed for chamfered tip due to the change of blade loading on suction side. Some significant non-dimensional parameters, such as pressure, swirling strength and turbulent kinetic energy, were used to depict the characteristics of tip vortex core. By the distribution of circumferential vorticity which dominates the vortical flows near the tip region, it is observed that the endwall detachment as the leakage flow meets the mainstream varies considerably for tested cases. The present study also indicates that the shear layer feeds the turbulence into tip leakage vortex core, but the way is different. For the chamfered tip, high turbulence level in vortex core is mainly from the tip clearance where large turbulent kinetic energy emerges, while it is almost from a layer extending from the suction side corner for rounded tip. At last, the visualized observations show that tip clearance cavitation is eliminated dramatically for rounded tip but more intensive for chamfered tip, which can be associated with the vortex structure in the clearance. 展开更多
关键词 涡动力学 几何形状 轴流泵 形态 空化 泄漏 叶尖
原文传递
Reliability and sensitivity analyses of HPT blade-tip radial running clearance using multiply response surface model 被引量:5
11
作者 翟学 费成巍 +1 位作者 翟庆刚 王建军 《Journal of Central South University》 SCIE EI CAS 2014年第11期4368-4377,共10页
To reasonably design the blade-tip radial running clearance(BTRRC) of high pressure turbine and improve the performance and reliability of gas turbine, the multi-object multi-discipline reliability sensitivity analysi... To reasonably design the blade-tip radial running clearance(BTRRC) of high pressure turbine and improve the performance and reliability of gas turbine, the multi-object multi-discipline reliability sensitivity analysis of BTRRC was accomplished from a probabilistic prospective by considering nonlinear material attributes and dynamic loads. Firstly, multiply response surface model(MRSM) was proposed and the mathematical model of this method was established based on quadratic function. Secondly, the BTRRC was decomposed into three sub-components(turbine disk, blade and casing), and then the single response surface functions(SRSFs) of three structures were built in line with the basic idea of MRSM. Thirdly, the response surface function(MRSM) of BTRRC was reshaped by coordinating SRSFs. From the analysis, it is acquired to probabilistic distribution characteristics of input-output variables, failure probabilities of blade-tip clearance under different static blade-tip clearances δ and major factors impacting BTRRC. Considering the reliability and efficiency of gas turbine, δ=1.87 mm is an optimally acceptable option for rational BTRRC. Through the comparison of three analysis methods(Monte Carlo method, traditional response surface method and MRSM), the results show that MRSM has higher accuracy and higher efficiency in reliability sensitivity analysis of BTRRC. These strengths are likely to become more prominent with the increasing times of simulations. The present study offers an effective and promising approach for reliability sensitivity analysis and optimal design of complex dynamic assembly relationship. 展开更多
关键词 响应曲面模型 叶尖间隙 径向游隙 可靠性 敏感性分析 HPT 燃气涡轮机 灵敏度分析
下载PDF
Research on active disturbance rejection control method for turbine blade tip clearance 被引量:2
12
作者 WANG WeiMin SHAO Xing +2 位作者 LI QiHang Gao JinJi HAO ZeRui 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第10期1795-1804,共10页
Blade tip clearance(BTC) is one of the key factors affecting the efficiency and reliability of high performance turbomachinery such as heavy duty steam turbines, aircraft engines and other gas turbo machines. The self... Blade tip clearance(BTC) is one of the key factors affecting the efficiency and reliability of high performance turbomachinery such as heavy duty steam turbines, aircraft engines and other gas turbo machines. The self-adjusting ability of BTC according to the operation condition changing is important to meet the requirement of performance. In this paper, the principle and method of adjusting the BTC by controlling the axial displacement of the rotor were proposed and studied. The basic principle is that the BTC of the turbomachinery with a conical tail shroud will be affected by the axial displacement of rotor and thereby can be adjusted by controlling the axial position of rotor, which can be adjusted by the controllable oil pressure acting on the thrust bearing. To reach a higher control precision, lower noise and model perturbation, an adaptive quasi-sliding mode control(AQSMC) algorithm based on the disturbance observer(DOB) was designed, and numerical and experimental investigations were carried out. The numerical simulation results show that this algorithm can not only effectively suppress the disturbance, but also, compared with the general reaching law, effectively reduce the chattering and transient high gain switching effect of the closed-loop controller system and avoid the instability caused by the controller. Based on the DOB-AQSMC algorithm, the BTC was stabilized within 2 s with no overshoot and no misalignment in the test rig, and this algorithm achieves a better control performance than the proportion-integral-differential(PID) algorithm. These achievements can be used to push forward the intelligent turbomachinery development. 展开更多
关键词 blade tip CLEARANCE TURBOMACHINERY active DISTURBANCE REJECTION control DOB-AQSM method
原文传递
Flowfield and Heat Transfer past an Unshrouded Gas Turbine Blade Tip with Different Shapes 被引量:2
13
作者 Jian-Jun LIU Peng LI +1 位作者 Chao ZHANG Bai-Tao AN 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第2期128-134,共7页
This paper describes the numerical investigations of flow and heat transfer in an unshrouded turbine rotor blade of a heavy duty gas turbine with four tip configurations. By comparing the calculated contours of heat t... This paper describes the numerical investigations of flow and heat transfer in an unshrouded turbine rotor blade of a heavy duty gas turbine with four tip configurations. By comparing the calculated contours of heat transfer coefficients on the flat tip of the HP turbine rotor blade in the GE-E 3 aircraft engine with the corresponding experimental data, the κ-ω turbulence model was chosen for the present numerical simulations. The inlet and outlet boundary conditions for the turbine rotor blade are specified as the real gas turbine, which were obtained from the 3D full stage simulations. The rotor blade and the hub endwall are rotary and the casing is stationary. The influences of tip configurations on the tip leakage flow and blade tip heat transfer were discussed. It's showed that the different tip configurations changed the leakage flow patterns and the pressure distributions on the suction surface near the blade tip. Compared with the flat tip, the total pressure loss caused by the leakage flow was decreased for the full squealer tip and pressure side squealer tip, while increased for the suction side squealer tip. The suction side squealer tip results in the lowest averaged heat transfer coefficient on the blade tip compared to the other tip configurations. 展开更多
关键词 平均传热系数 燃气涡轮叶片 涡轮转子叶片 燃气涡轮机 形状 流场 重型燃气轮机 出口边界条件
原文传递
Numerical simulation on impact-contact between the tips of a pair of blades
14
作者 马晓峰 刘占生 +1 位作者 王贵龙 侯宪科 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第3期48-55,共8页
To study the dynamic characteristics and damping mechanism of impact-contact between the tips of blades further more,the impact-contact between the tips of a pair of blades was studied through numerical simulation.In ... To study the dynamic characteristics and damping mechanism of impact-contact between the tips of blades further more,the impact-contact between the tips of a pair of blades was studied through numerical simulation.In this paper,the dynamic equation of contact-impact between the tips was established and Newmark direct integration method was adopted in numerical simulation.The nonlinear response characteristics and damping mechanism of impact-contact system are obtained.The results of numerical simulation were obtained as follows:As the clearance between blade shrouds is smaller,the vibration amplitude is smaller.The clearance between blade shrouds has a great influence on the input energy of the aerodynamic-excitation-vibration force.As the clearance of blade shrouds increases,the input energy of the aerodynamic-excitation-vibration force increases rapidly. 展开更多
关键词 blade with tip impact-contact NONLINEARITY
下载PDF
Effect of Tip-Blade Cutting on the Performance of Large Scale Axial Fan
15
作者 尹超 胡骏 +1 位作者 严伟 张晨凯 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第6期623-630,共8页
The effect of tip-blade cutting on the performance of a large scale axial fan was investigated using computational fluid dynamics(CFD)methods.Experiments verified the numerical simulations.The original fan was compare... The effect of tip-blade cutting on the performance of a large scale axial fan was investigated using computational fluid dynamics(CFD)methods.Experiments verified the numerical simulations.The original fan was compared with the one with tip-cutting in terms of dimensionless characteristic and aerodynamic performance in tip region under the conditions of the maximum efficiency point and near-stall point.The results showed that double leakage flow occurred in tip clearance at maximum efficiency point and spillage of leakage flow from leading edge occurred in tip-blade region at near-stall point for the both two fans;and that tip-cutting with 6% of blade height could reduce the intensity of tip-leakage vortex and increase flow capacity in tip blade region,and hold the stall margin almost the same as the original fan.The maximum efficiency of the fan with tip-cutting was improved by1%,and the ability of total pressure rising was obviously greater than the original fan. 展开更多
关键词 large axial fan tip-blade cutting numerical simulation tip-leakage vortex flow capacity
下载PDF
压气机内部旋转不稳定的研究综述
16
作者 楚武利 陈向艺 《推进技术》 EI CAS CSCD 北大核心 2024年第5期1-15,共15页
旋转不稳定是压气机工作在高负荷近失速工况时的一种常见现象。研究旋转不稳定在降低压气机工作噪声、减小流致振动以及保障航空发动机稳定工作等方面具有重要意义。首先对旋转不稳定现象进行了回顾,详细讨论了旋转不稳定的特征。其次,... 旋转不稳定是压气机工作在高负荷近失速工况时的一种常见现象。研究旋转不稳定在降低压气机工作噪声、减小流致振动以及保障航空发动机稳定工作等方面具有重要意义。首先对旋转不稳定现象进行了回顾,详细讨论了旋转不稳定的特征。其次,重点调研了旋转不稳定的起源和机理,将旋转不稳定产生的原因归纳为叶尖泄漏流、涡脱落以及流动剪切等类别。此外,回顾了模拟旋转不稳定的数值方法,讨论了多种流动控制手段对旋转不稳定的作用效果。最后,对旋转不稳定的研究现状进行了总结,对未来的研究趋势进行了展望。 展开更多
关键词 压气机 旋转不稳定 叶尖泄漏流 涡脱落 非定常流 数值模拟 流动控制 综述
下载PDF
基于熵变匹配追踪的叶端定时数据缺失识别方法研究
17
作者 杨志勃 吴淑明 +2 位作者 乔百杰 王亚南 陈雪峰 《计测技术》 2024年第2期32-39,共8页
为解决叶端定时系统在实际应用中存在的数据缺失问题,提出基于熵变匹配追踪的叶端定时数据缺失识别方法。该方法利用相关熵诱导度量基于高斯核函数度量样本的权重。不同于正交匹配追踪对所有观测数据赋予相同权重,熵变匹配追踪基于相关... 为解决叶端定时系统在实际应用中存在的数据缺失问题,提出基于熵变匹配追踪的叶端定时数据缺失识别方法。该方法利用相关熵诱导度量基于高斯核函数度量样本的权重。不同于正交匹配追踪对所有观测数据赋予相同权重,熵变匹配追踪基于相关熵诱导度量变化,对观测数据赋予不同范数类型的权重,使得其对异常值具有较好的鲁棒性。通过仿真分析与实验对该方法的性能进行验证,结果显示所采用的熵变权重因子为数据缺失位置分配了接近于零的权重,有效降低了数据缺失对特征提取结果的影响,证明了该方法的鲁棒性。基于熵变匹配追踪的叶端定时数据缺失识别方法为叶端定时系统的装机应用提供了理论支撑,具有技术借鉴价值。 展开更多
关键词 叶端定时 数据缺失 特征识别 熵变匹配追踪
下载PDF
涡流恢复导叶对螺旋桨气动和声学性能影响研究
18
作者 韦卿 张武 +3 位作者 陈正武 仝帆 朱文浩 王良军 《推进技术》 EI CAS CSCD 北大核心 2024年第5期63-75,共13页
为了对比安装涡流恢复导叶与单排螺旋桨气动性能和气动噪声的差异,采用数值模拟的方法研究了安装六种不同间距涡流恢复导叶和单排螺旋桨的气动力及气动噪声。研究结果表明:在起飞状态,级间距Δx=0.27的工况下,安装涡流恢复导叶使得推力... 为了对比安装涡流恢复导叶与单排螺旋桨气动性能和气动噪声的差异,采用数值模拟的方法研究了安装六种不同间距涡流恢复导叶和单排螺旋桨的气动力及气动噪声。研究结果表明:在起飞状态,级间距Δx=0.27的工况下,安装涡流恢复导叶使得推力系数增加6.4%,效率增加6.7%。随着间距的增大,前级叶片的桨尖涡、尾迹涡等涡系结构在通过后级叶片时破碎并向下游传播,且强度逐渐减小。噪声强度随着级间距的增加而逐渐减小,最大级间距涡流恢复导叶的噪声与最小级间距涡流恢复导叶噪声相比降低5.7 dB,噪声下降幅度随级间距的增加逐渐减缓,存在级间距最优位置使得推力增加最大,噪声强度适中。 展开更多
关键词 对转螺旋桨 涡流恢复导叶 桨尖涡 尾迹涡 干涉噪声
下载PDF
跨音速流动中涡轮动叶叶顶的气膜冷却特性分析
19
作者 张博伦 夏军 +1 位作者 胡其高 朱惠人 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第2期153-161,共9页
为了掌握跨音速流动中涡轮动叶叶顶气膜冷却特性,采用压敏漆测试技术来研究叶顶间隙高度和质量流量比对叶顶气膜冷却特性的影响规律。研究结果表明:在小质量流量比条件下,增加叶顶间隙高度能够有效改善叶顶中弦区域的气膜覆盖,然而当质... 为了掌握跨音速流动中涡轮动叶叶顶气膜冷却特性,采用压敏漆测试技术来研究叶顶间隙高度和质量流量比对叶顶气膜冷却特性的影响规律。研究结果表明:在小质量流量比条件下,增加叶顶间隙高度能够有效改善叶顶中弦区域的气膜覆盖,然而当质量流量较大时,叶顶间隙高度变化对叶顶中弦区域的气膜冷却效率分布影响并不明显;在小叶顶间隙高度条件下,随着质量流量比增加,叶顶中弦区域冷气覆盖效果逐渐变差,在大叶顶间隙高度条件下,仅当质量流量比从0.1%+0.05%增加到0.14%+0.07%时,叶顶中弦区域的冷气覆盖效果才有所改善。 展开更多
关键词 动叶叶顶 跨音速流动 叶顶间隙高度 质量流量比 气膜冷却
下载PDF
基于叶尖定时数据奇异值分解的振动事件识别
20
作者 支烽耀 牛广越 +2 位作者 段发阶 邓震宇 钟国舜 《传感技术学报》 CAS CSCD 北大核心 2024年第5期797-806,共10页
叶尖定时数据自动化测量及处理是旋转机械在线监测和智能运维的必要环节,快速、准确判断叶片振动类型,实现振动事件识别是数据自动化测量及处理的关键。提出了一种基于加窗叶尖定时数据奇异值分解的振动事件识别方法,仅需单只传感器准... 叶尖定时数据自动化测量及处理是旋转机械在线监测和智能运维的必要环节,快速、准确判断叶片振动类型,实现振动事件识别是数据自动化测量及处理的关键。提出了一种基于加窗叶尖定时数据奇异值分解的振动事件识别方法,仅需单只传感器准确识别叶片同步、异步振动事件。基于不同叶片叶尖定时数据时延特性,加窗构造了“类重构吸引子矩阵”,根据矩阵奇异值特征实现振动事件识别。开展了方法仿真及实验验证,仿真与实验结果一致性良好,压气机试验件测试数据表明,叶片发生振动事件时第1奇异值增大为7倍以上,其中发生异步振动事件时第2奇异值增大为14倍以上,提出方法能够准确识别叶片同步、异步振动事件。 展开更多
关键词 振动测量 叶尖定时 振动事件 奇异值分解 重构吸引子矩阵
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部