Baosteel always aims at becoming one of the most profitable enterprises in the world, enjoying international competence, benchmarking with the world advanced level,pursuing innovation sustainable development. Recent y...Baosteel always aims at becoming one of the most profitable enterprises in the world, enjoying international competence, benchmarking with the world advanced level,pursuing innovation sustainable development. Recent years, Baosteel Iron-making Department has caught the opportunity of increasing steel demand; conquering disadvantages such as changeable up-stream market, fuel and raw material’s tight supplies and lower quality, etc. In our department, Major technical problems have been overcome, blast furnace intensified smelting technology improved, the cost of molten iron under control, blast furnace long-life span control technology made breakthrough, and Baosteel’s ironmaking capacity improved further.展开更多
Clean Production is the best method for iron-steel making industry to eliminate pollution thoroughly. In order to achieve this object, smelting reduction technology should play the key role. Furthermore, process integ...Clean Production is the best method for iron-steel making industry to eliminate pollution thoroughly. In order to achieve this object, smelting reduction technology should play the key role. Furthermore, process integration method can be used to solve the problem of residual gas utilization by integrating smelting reduction process with direct reduced iron unit, gasoline, methanol or dimethyl ether synthesis unit, etc. A new smelting reduction process has been proposed which can be constructed on the present plant site. Since this process can directly treat the lump coal and iron ore fines, it reduces st6ps necessary in traditional blast furnace process and Corex smelting reduction process.展开更多
A thermodynamic model was developed to predict the distribution behavior of Cu, Fe, S, O, Pb, Zn, As, and the heat balance in a lead blast furnace. The modeling results are validated by the plant data of a lead smelte...A thermodynamic model was developed to predict the distribution behavior of Cu, Fe, S, O, Pb, Zn, As, and the heat balance in a lead blast furnace. The modeling results are validated by the plant data of a lead smelter in Kazakhstan. The model can be used to predict any set of controllable process parameters such as feed composition, smelting temperature, degree of oxygen enrichment and volume of oxygen-enriched air. The effects of the blast air, industrial oxygen, and coke charge on the distribution of Cu, Fe, S, O, Pb, Zn, As, the heat balance, and the lead loss in slag, were presented and discussed.展开更多
A study was carried out on the formation of Ti(C,N) during smelting vanadium-bearing titanomagnetite in blast furnace and the influence of MnO content on reduction of TiO_2 in the slag containing high titania. The red...A study was carried out on the formation of Ti(C,N) during smelting vanadium-bearing titanomagnetite in blast furnace and the influence of MnO content on reduction of TiO_2 in the slag containing high titania. The reduction of TiO_2 is restricted by MnOpredominantly at the slag-metal interface and no more at the slag-coke one. The formation of Ti(C,N) is remarkably restricted by MnO in the slag when the MnO content is about 4% and the basicity from 0.6 to 1.2 in the slag. MnO may also retards the reduction of SiO_2 and accelerates the desulphidation under certain condition.展开更多
The structural changes and reduction degree of chromite ore in blast furnace were studied by optical micrograph analysis,scanning electron microscope(SEM)and energy dispersive X-ray analysis(EDXA).The smelting reducti...The structural changes and reduction degree of chromite ore in blast furnace were studied by optical micrograph analysis,scanning electron microscope(SEM)and energy dispersive X-ray analysis(EDXA).The smelting reduction mechanism of chromite in blast furnace was primarily discussed.展开更多
文摘Baosteel always aims at becoming one of the most profitable enterprises in the world, enjoying international competence, benchmarking with the world advanced level,pursuing innovation sustainable development. Recent years, Baosteel Iron-making Department has caught the opportunity of increasing steel demand; conquering disadvantages such as changeable up-stream market, fuel and raw material’s tight supplies and lower quality, etc. In our department, Major technical problems have been overcome, blast furnace intensified smelting technology improved, the cost of molten iron under control, blast furnace long-life span control technology made breakthrough, and Baosteel’s ironmaking capacity improved further.
文摘Clean Production is the best method for iron-steel making industry to eliminate pollution thoroughly. In order to achieve this object, smelting reduction technology should play the key role. Furthermore, process integration method can be used to solve the problem of residual gas utilization by integrating smelting reduction process with direct reduced iron unit, gasoline, methanol or dimethyl ether synthesis unit, etc. A new smelting reduction process has been proposed which can be constructed on the present plant site. Since this process can directly treat the lump coal and iron ore fines, it reduces st6ps necessary in traditional blast furnace process and Corex smelting reduction process.
文摘A thermodynamic model was developed to predict the distribution behavior of Cu, Fe, S, O, Pb, Zn, As, and the heat balance in a lead blast furnace. The modeling results are validated by the plant data of a lead smelter in Kazakhstan. The model can be used to predict any set of controllable process parameters such as feed composition, smelting temperature, degree of oxygen enrichment and volume of oxygen-enriched air. The effects of the blast air, industrial oxygen, and coke charge on the distribution of Cu, Fe, S, O, Pb, Zn, As, the heat balance, and the lead loss in slag, were presented and discussed.
文摘A study was carried out on the formation of Ti(C,N) during smelting vanadium-bearing titanomagnetite in blast furnace and the influence of MnO content on reduction of TiO_2 in the slag containing high titania. The reduction of TiO_2 is restricted by MnOpredominantly at the slag-metal interface and no more at the slag-coke one. The formation of Ti(C,N) is remarkably restricted by MnO in the slag when the MnO content is about 4% and the basicity from 0.6 to 1.2 in the slag. MnO may also retards the reduction of SiO_2 and accelerates the desulphidation under certain condition.
基金Item Sponsored by National Natural Science Foundation of China(51074036)
文摘The structural changes and reduction degree of chromite ore in blast furnace were studied by optical micrograph analysis,scanning electron microscope(SEM)and energy dispersive X-ray analysis(EDXA).The smelting reduction mechanism of chromite in blast furnace was primarily discussed.