The gasification characteristics and gasification kinetics of coke in complex CO2/CO/H2/H2O/N2 systems similar to the gas system of industrial blast furnace (BF) were studied by the method of isothermal thermogravimet...The gasification characteristics and gasification kinetics of coke in complex CO2/CO/H2/H2O/N2 systems similar to the gas system of industrial blast furnace (BF) were studied by the method of isothermal thermogravimetric analysis. The experimental gas compositions and the corresponding temperature were chosen according to data reported for industrial BFs. The gasification behavior of coke was described by the Random Pore Model (RPM), Volumetric Model (VM), and Grain Model (GM). Results showed that the gas composition of the coke gasification zone in BF changes slightly and that the temperature is the most important factor affecting coke gasification. The lower activation energy of coke samples (Coke Reaction Index (CRI)>50) is due to the high Fe2O3 in the ash, lower degree of graphitization, and larger pore structure. In addition, the choice of kinetic model does not differ substantially in describing the gasification mechanism of coke in a BF.展开更多
Possibility of combustible gas production from municipal solid waste (MSW) using hot blast furnace (BF) slag has been studied.The objective of this work is to generate combustible gas from MSW using heated BF slag...Possibility of combustible gas production from municipal solid waste (MSW) using hot blast furnace (BF) slag has been studied.The objective of this work is to generate combustible gas from MSW using heated BF slag.In this experiment,the thermal stability of the MSW was analyzed by thermogravimetric analysis,and effects of temperature,gasifying agent (air,N2,steam) and BF slag on the gas products were investigated at 600?900 ?C.The thermogravimetric analysis indicates that the weight loss of MSW includes four stages:evaporation of the moisture,combustion of volatile materials,burning of carbon residue and burnout of ash.The contents of the combustible gas increase with increasing temperature,and the lower calorific value (LCV) increases rapidly at 600?900 ?C.It is found that volume fraction of CO,H2 and CH4 at different atmospheres increases in the order N2〈air〈steam.It is believed that BF slag acts as the catalyst and the heat carrier,which promotes the gasification reactivity of MSW.展开更多
Using fixed-bed reaction method and changing the gas composition and dust content,the influence of blast furnace top gas composition and dust on HCl removal with low temperature Ca-based antichlor was studied.It was f...Using fixed-bed reaction method and changing the gas composition and dust content,the influence of blast furnace top gas composition and dust on HCl removal with low temperature Ca-based antichlor was studied.It was found that,when the content of CO2 in blast furnace top gas increased,the dechlorination efficiency was getting worse obviously;when the contents of CO and N2 increased,the dechlorination efficiency was getting better to a certain extent;when the content of H2 changed,the dechlorination efficiency got no significant change;as the content of dust increased,the dechlorination efficiency got better obviously when the content was less than 15 g/m3,but it would be got worse quickly when the content was more than 20 g/m3,and the best content was 15–20 g/m3;the suitable site of the process of dechlorination was after gravity dust collector and before bag dust collector.展开更多
Compared with the traditional wet-type de-dusting technology ,the dry-type de-dusting technology is considered to be environmentally friendly and energy-saving. However, the pipes carrying the de-dusted blast fiLrnace...Compared with the traditional wet-type de-dusting technology ,the dry-type de-dusting technology is considered to be environmentally friendly and energy-saving. However, the pipes carrying the de-dusted blast fiLrnace gas (BFG) tends to be corrosive more quickly and seriously. In order to investigate the reasons for the quick corrosion, the gas pipes and auxiliary bellows installed in Baosteel' s newly built BFG dry-type de-dusting system are studied. The corrosive properties of the condensed water, such as the pH value, are measured and analyzed. Meanwhile, various factors that may influence the corrosion rate of the pipes are studied by experiment. On the basis of the investigation and research, the causes of corrosion and leakage on the pipes are discovered. It is the process of dry de-dusting that is responsible ,to a large extent, for the quick corrosion of the pipes. The equipment of spray tower is introduced and its effects are then discussed. This tower is designed to eliminate most of chloridion and neutralized the acid by spraying the alkaline water to the dedusted gas flow. The practical operation shows that the tower helps to lessen the corrosiveness of the dry de-dusted gas effectively. The last part of this study analyzes the possible impacts of the dry-type de-dusting process of the newly built blast furnace (BF) on the main BFG piping which has been in the state of being corroded for years by estimating its potential corrosion rate, and some suggestions on maintenance are given as well.展开更多
A three-dimensional mathematical model,based on differential balances of mass and momentum,hasbeen developed to describe the two-phase flow of gas and liquid through the dropping zone of the blast fur-nace.Agreement b...A three-dimensional mathematical model,based on differential balances of mass and momentum,hasbeen developed to describe the two-phase flow of gas and liquid through the dropping zone of the blast fur-nace.Agreement between observed and calculated values verifies the validity of this model.On the basis of this model,various parameters for the surrounding of the dry zone of Blast FurnaceNo.I-BF of the Beijing Iron and Steel Company have been computed,from which a diagram for demar-cation of fluidization of coke and flooding of slag has been proposed.展开更多
The temperature of gas flow inside a blast furnace (BF) changes significantly when the blast furnace is under unstable operations, and the temperature and stress distributions of cooling staves (CS) for BF work th...The temperature of gas flow inside a blast furnace (BF) changes significantly when the blast furnace is under unstable operations, and the temperature and stress distributions of cooling staves (CS) for BF work the same pattern. The effect of gas temperature on the temperature, stress, and displacement distributions of the cooling stave were analyzed as the gas temperature inside the blast furnace rose from 1000 to 1600℃ in 900 s. The results show that both the temperature and temperature gradient of the hot side of CS increase when the gas flow temperature inside BF rises. The temperature gradient of the hot side of CS is greater than that of the other area of CS and it can reach 65℃/mm. In the vertical direction of the hot side of CS, closer to the central part of CS, the stress intensity is greater than that of the other area of the hot side of CS, which causes cracks on the hot side of CS in the vertical di- rection. As the gas temperature increases, the stress intensity rate near the fixed pin increases and finally reaches 45 MPa/s. Fatigues near the fixed pin and bolts are caused by great stress intensity rate and the area around the pin can be damaged easily. The edge of CS bends toward the cold side and the central part of CS shifts toward the hot surface.展开更多
Nowadays,there are two major trends,which are the increasing blast furnace (BF) working volume and the decreasing fuel resource as well as the decline in its quality,in the ironmaking filed. The two trends lead to t...Nowadays,there are two major trends,which are the increasing blast furnace (BF) working volume and the decreasing fuel resource as well as the decline in its quality,in the ironmaking filed. The two trends lead to the difficulty in the BF operation. The decline of the BF stability requires higher and more elaborate operational techniques. A reasonable and compatible BF comprehensive operating system,as the base of the BF stabilization,is desired to satisfy the demand of large-scaled BF developments. Based on the practical operation of Baosteel No. 3 BF in 2010, the present work analyzes and discusses the basic rules of large-scaled BF stable control techniques,and further optimizes and improves its gas flow control techniques, develops strategies against the decline in fuel quality, which will contribute to the promotion of largescaled BF operational techniques progress.展开更多
A high-temperature reduction roasting method was used to achieve metallic iron and zinc recovery from blast furnace gas ash(BFA).The reduction processes for Zn-containing and Fe-containing oxides were analyzed in deta...A high-temperature reduction roasting method was used to achieve metallic iron and zinc recovery from blast furnace gas ash(BFA).The reduction processes for Zn-containing and Fe-containing oxides were analyzed in detail by using ther-modynamic equilibrium calculation and the principle of minimum free energy.The results showed that the main reaction in the system is the reduction of ZnFe_(2)_(4)and iron oxides.Over the full temperature range,iron oxides were more easily reduced than zinc oxides.Regardless of the amount of CO contained in the system,the reduction of ZnO to Zn was difficult to proceed below the boiling point(906℃)of Zn.When the reduction temperature is below 906℃,the reduction process of zinc ferrate was ZnFe_(2)_(4)→ZnO;when the reduction temperature is above 906℃,its reduction process becomed ZnFe_(2)_(4)→ZnO→Zn(g).The metallization and dezincification rates of the BFA gradually increased with increasing reaction temperature.As the C/O ratio increased,the metallization and dezincification rates first increased and then decreased.The effect of reduction time on BFA reduction was similar to that of reaction temperature.展开更多
It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concen...It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concentration in N_2-CO-H_2 atmosphere with unchanged CO content on reduction swelling behaviors of oxidized pellet at 1173 K were studied, to clarify the mechanism of hydrogen-enriched reduction and exclude the influences of CO. Then, the reduction swelling behaviors of oxidized pellet at 1173 K in actual atmosphere under coke oven gas(COG) injection, got from the simulation results of multi-fluid blast furnace model, were investigated. The results show that with the concentration of hydrogen increasing in N_2-CO-H_2 gas from 2% to 18%, the reduction swelling index of pellet decreases from 10.12% to 5.57% while the reduction ratio of pellet increases obviously from 39.85% to 69.58%. In addition, with COG injection rate increasing from 0 to 152.34 m^3/t, the reduction swelling index of pellet decreases slightly from 10.71% to 9.54% while the reduction ratio of pellet is increased from 31.57% to 36.39%. The microstructures of pellet are transformed from the platy structure to the flocculent structure.展开更多
The gas flow from tuyere to raceway zone by blasting involves three distributional zones, such as dripping, cohesive, and lumpy zone. The gas flow distribution in lumpy zone directly affects the gas utilization ration...The gas flow from tuyere to raceway zone by blasting involves three distributional zones, such as dripping, cohesive, and lumpy zone. The gas flow distribution in lumpy zone directly affects the gas utilization ration and smooth operation in the blast furnace. However, the furnace closeness brings about great difficulty in the study of high-temperature gas flow. The charging and blasting system affecting the gas flow and whether the top gas flow distribution could reflect its inner condition as well as the furnace state, such as hanging or scaffolding, which have become the main problems for the research on gas flow. Recently, several researches overseas studied gas flow distribution using the numerical simulation method; however, such a research was rare amongst the natives. In this study, the flow model of gas in cohesive and lumpy zone was established using the numerical simulation software and the gas flow distributions with uniform distribution of burden permeability, scaffolding of wall, and nonuniform charge level were analyzed. As a result, the effects of cohesive zone and lower parts on the gas flow are very limited and the charge level largely affects the distribution of top gas flow. Therefore, it was found that the distribution of top gas flow could hardly reflect the inner gas flow. The process is called "redistribution" effect, which means that the gas flow after passing through the raceway, dripping, and cohesive zone is distributed when it flows into the lumpy zone.展开更多
In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG...In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models (k-to SST and k-e Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided.展开更多
Blast furnace ironmaking process is the most mature and highly effective process for producing liquid iron.Blast furnace is a gas-solid and gas-solid-liquid countercurrent reactor,and maintaining gas permeability is t...Blast furnace ironmaking process is the most mature and highly effective process for producing liquid iron.Blast furnace is a gas-solid and gas-solid-liquid countercurrent reactor,and maintaining gas permeability is the precondition of smooth production.Therefore,improving the gas permeability throughout the blast furnace remains a hot issue which is concerned by many metallurgical scholars.According to the research results of many scholars,the dominant factors influencing the gas permeability of different locations in the blast furnace(locations are distinguished according to the morphology change of the burdens)were reviewed.And the strategies for improving the gas permeability of different locations in the blast furnace were summarized based on these dominant influencing factors,such as suppressing the low-temperature reduction degradation of sinter in the lump zone,improving the indirect reduction degree and suppressing the interaction between different burdens.It is hoped to provide both theoretical and practical values for guiding the blast furnace so as to improve smooth operation and smelting efficiency.展开更多
Based on the stoichiometric method and the free energy minimization method,an ideal model for the reduction of iron oxides by carbon and hydrogen under blast furnace conditions was established,and the reduction effici...Based on the stoichiometric method and the free energy minimization method,an ideal model for the reduction of iron oxides by carbon and hydrogen under blast furnace conditions was established,and the reduction efficiency and theoretical energy consumption of the all-carbon blast furnace and the hydrogen-rich blast furnace were compared.The results show that after the reduction reaction is completed at the bottom of the blast furnace,the gas produced by reduction at 1600℃still has a certain excessive reduction capacity,which is due to the hydrogen brought in by the hydrogen-rich blast as well as the excess carbon monoxide generated by the reaction of the coke and the oxygen brought in by the blast.During the process of the gas with excessive reduction capacity rising from the bottom of the blast furnace and gas reduction process,the excessive reduction capacity of the gas gradually decreases with the increase in the dydrogen content in the blast.In the all-carbon blast furnace,the excess gas reduction capacity is the strongest,and the total energy consumption per ton of iron reduction is the lowest.This shows that,for the current operation mode of the blast furnace,adding hydrogen in the blast furnace cannot reduce the consumption of carbon required for reduction per ton of iron,but rather increases the consumption of carbon.展开更多
The real-time energy flow data obtained in industrial production processes are usually of low quality.It is difficult to accurately predict the short-term energy flow profile by using these field data,which diminishes...The real-time energy flow data obtained in industrial production processes are usually of low quality.It is difficult to accurately predict the short-term energy flow profile by using these field data,which diminishes the effect of industrial big data and artificial intelligence in industrial energy system.The real-time data of blast furnace gas(BFG)generation collected in iron and steel sites are also of low quality.In order to tackle this problem,a three-stage data quality improvement strategy was proposed to predict the BFG generation.In the first stage,correlation principle was used to test the sample set.In the second stage,the original sample set was rectified and updated.In the third stage,Kalman filter was employed to eliminate the noise of the updated sample set.The method was verified by autoregressive integrated moving average model,back propagation neural network model and long short-term memory model.The results show that the prediction model based on the proposed three-stage data quality improvement method performs well.Long short-term memory model has the best prediction performance,with a mean absolute error of 17.85 m3/min,a mean absolute percentage error of 0.21%,and an R squared of 95.17%.展开更多
Top gas recycling oxygen blast furnace(TGR-OBF)process is a promising ironmaking process.The biggest challenge of the TGR-OBF in operation is the dramatic decrease of top gas volume(per ton hot metal),which once l...Top gas recycling oxygen blast furnace(TGR-OBF)process is a promising ironmaking process.The biggest challenge of the TGR-OBF in operation is the dramatic decrease of top gas volume(per ton hot metal),which once led to hanging-up and shutdowns in practice of the Toulachermet.In order to avoid this weakness,the strategy of medium oxygen blast furnace was presented.The maneuverable zone of the TGR-OBF was determined by the top gas volume,which should not be far from the data of the traditional blast furnace.The deviation of ±12.5% was used,and then the maneuverable blast oxygen content is from 0.30 to 0.47 according to the calculation.The flame temperature and the top gas volume have no much difference compared to those of the traditional blast furnace.The minimum carbon consumption of 357 kg per ton hot metal in the maneuverable zone occurs at the oxygen content of 0.30(fuel saving of 14%).In the unsteady evolution,the N2 accumulation could approach nearly zero after the recycling reached 6 times.Thus far,some TGR-OBF industrial trials have been carried out in different countries,but the method of medium oxygen enriched TGR-OBF has not been implemented,because the accumulation of N2 was worried about.The presented strategy of medium oxygen enriched TGR-OBF is applicable and the strategy with good operational performance is strongly suggested as a forerunner of the full oxygen blast furnace.展开更多
lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace b...lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (51G) flowrate to total gas flowrate on the SIC penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center.展开更多
Primary distribution of coal gas in blast furnace raceway has an important effect on blast furnace ironmaking process. The coal gas component concentration distribution was studied experimentally using a three-dimensi...Primary distribution of coal gas in blast furnace raceway has an important effect on blast furnace ironmaking process. The coal gas component concentration distribution was studied experimentally using a three-dimensional cold model. The results showed that CH4 concentration diminishes along with the height increasing on vertical section of raceway, and the concentration is the highest in the bottom of raceway. CH4 concentration increases gradually along.the raceway depth with the lowest concentration value in front of the tuyere. The distribution of CH4 concentration has different characteristics in different raceway zones.展开更多
基金financially supported by the National Key Research and Development Program of China (Nos. 2017YFB0304300 and 2017YFB0304303)the National Science Foundation of China (No. 51774032)the Chinese Fundamental Research Funds for the Central Universities (No. FRF-TP-17-086A1)
文摘The gasification characteristics and gasification kinetics of coke in complex CO2/CO/H2/H2O/N2 systems similar to the gas system of industrial blast furnace (BF) were studied by the method of isothermal thermogravimetric analysis. The experimental gas compositions and the corresponding temperature were chosen according to data reported for industrial BFs. The gasification behavior of coke was described by the Random Pore Model (RPM), Volumetric Model (VM), and Grain Model (GM). Results showed that the gas composition of the coke gasification zone in BF changes slightly and that the temperature is the most important factor affecting coke gasification. The lower activation energy of coke samples (Coke Reaction Index (CRI)>50) is due to the high Fe2O3 in the ash, lower degree of graphitization, and larger pore structure. In addition, the choice of kinetic model does not differ substantially in describing the gasification mechanism of coke in a BF.
基金supported by the Applied Basic Research Key Project of Yunnan Province (No.2007E0014Z)
文摘Possibility of combustible gas production from municipal solid waste (MSW) using hot blast furnace (BF) slag has been studied.The objective of this work is to generate combustible gas from MSW using heated BF slag.In this experiment,the thermal stability of the MSW was analyzed by thermogravimetric analysis,and effects of temperature,gasifying agent (air,N2,steam) and BF slag on the gas products were investigated at 600?900 ?C.The thermogravimetric analysis indicates that the weight loss of MSW includes four stages:evaporation of the moisture,combustion of volatile materials,burning of carbon residue and burnout of ash.The contents of the combustible gas increase with increasing temperature,and the lower calorific value (LCV) increases rapidly at 600?900 ?C.It is found that volume fraction of CO,H2 and CH4 at different atmospheres increases in the order N2〈air〈steam.It is believed that BF slag acts as the catalyst and the heat carrier,which promotes the gasification reactivity of MSW.
基金Project(51274080)supported by the National Natural Science Foundation of ChinaProject(E2013209051)supported by the Hebei Science Foundation and the Steel and Iron Joint Research Foundation Project,China+1 种基金Project(U1502273)supported by the Joint Funds of the Natural Science Foundation of China and Yunnan Provincial GovernmentProjects(N150202001,N150203003)supported by the Fundamental Research Funds for the Central Universities,China
文摘Using fixed-bed reaction method and changing the gas composition and dust content,the influence of blast furnace top gas composition and dust on HCl removal with low temperature Ca-based antichlor was studied.It was found that,when the content of CO2 in blast furnace top gas increased,the dechlorination efficiency was getting worse obviously;when the contents of CO and N2 increased,the dechlorination efficiency was getting better to a certain extent;when the content of H2 changed,the dechlorination efficiency got no significant change;as the content of dust increased,the dechlorination efficiency got better obviously when the content was less than 15 g/m3,but it would be got worse quickly when the content was more than 20 g/m3,and the best content was 15–20 g/m3;the suitable site of the process of dechlorination was after gravity dust collector and before bag dust collector.
文摘Compared with the traditional wet-type de-dusting technology ,the dry-type de-dusting technology is considered to be environmentally friendly and energy-saving. However, the pipes carrying the de-dusted blast fiLrnace gas (BFG) tends to be corrosive more quickly and seriously. In order to investigate the reasons for the quick corrosion, the gas pipes and auxiliary bellows installed in Baosteel' s newly built BFG dry-type de-dusting system are studied. The corrosive properties of the condensed water, such as the pH value, are measured and analyzed. Meanwhile, various factors that may influence the corrosion rate of the pipes are studied by experiment. On the basis of the investigation and research, the causes of corrosion and leakage on the pipes are discovered. It is the process of dry de-dusting that is responsible ,to a large extent, for the quick corrosion of the pipes. The equipment of spray tower is introduced and its effects are then discussed. This tower is designed to eliminate most of chloridion and neutralized the acid by spraying the alkaline water to the dedusted gas flow. The practical operation shows that the tower helps to lessen the corrosiveness of the dry de-dusted gas effectively. The last part of this study analyzes the possible impacts of the dry-type de-dusting process of the newly built blast furnace (BF) on the main BFG piping which has been in the state of being corroded for years by estimating its potential corrosion rate, and some suggestions on maintenance are given as well.
文摘A three-dimensional mathematical model,based on differential balances of mass and momentum,hasbeen developed to describe the two-phase flow of gas and liquid through the dropping zone of the blast fur-nace.Agreement between observed and calculated values verifies the validity of this model.On the basis of this model,various parameters for the surrounding of the dry zone of Blast FurnaceNo.I-BF of the Beijing Iron and Steel Company have been computed,from which a diagram for demar-cation of fluidization of coke and flooding of slag has been proposed.
基金supported by the National Natural Science Foundation of China (No.60672145)
文摘The temperature of gas flow inside a blast furnace (BF) changes significantly when the blast furnace is under unstable operations, and the temperature and stress distributions of cooling staves (CS) for BF work the same pattern. The effect of gas temperature on the temperature, stress, and displacement distributions of the cooling stave were analyzed as the gas temperature inside the blast furnace rose from 1000 to 1600℃ in 900 s. The results show that both the temperature and temperature gradient of the hot side of CS increase when the gas flow temperature inside BF rises. The temperature gradient of the hot side of CS is greater than that of the other area of CS and it can reach 65℃/mm. In the vertical direction of the hot side of CS, closer to the central part of CS, the stress intensity is greater than that of the other area of the hot side of CS, which causes cracks on the hot side of CS in the vertical di- rection. As the gas temperature increases, the stress intensity rate near the fixed pin increases and finally reaches 45 MPa/s. Fatigues near the fixed pin and bolts are caused by great stress intensity rate and the area around the pin can be damaged easily. The edge of CS bends toward the cold side and the central part of CS shifts toward the hot surface.
文摘Nowadays,there are two major trends,which are the increasing blast furnace (BF) working volume and the decreasing fuel resource as well as the decline in its quality,in the ironmaking filed. The two trends lead to the difficulty in the BF operation. The decline of the BF stability requires higher and more elaborate operational techniques. A reasonable and compatible BF comprehensive operating system,as the base of the BF stabilization,is desired to satisfy the demand of large-scaled BF developments. Based on the practical operation of Baosteel No. 3 BF in 2010, the present work analyzes and discusses the basic rules of large-scaled BF stable control techniques,and further optimizes and improves its gas flow control techniques, develops strategies against the decline in fuel quality, which will contribute to the promotion of largescaled BF operational techniques progress.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51704021)Key Research and Development Projects of Sichuan Province(021YFG0114)+1 种基金Key Research and Development Projects of Shandong Province(2021CXGC010209)the Joint Funds of the National Natural Science Foundation of China(U1560203).
文摘A high-temperature reduction roasting method was used to achieve metallic iron and zinc recovery from blast furnace gas ash(BFA).The reduction processes for Zn-containing and Fe-containing oxides were analyzed in detail by using ther-modynamic equilibrium calculation and the principle of minimum free energy.The results showed that the main reaction in the system is the reduction of ZnFe_(2)_(4)and iron oxides.Over the full temperature range,iron oxides were more easily reduced than zinc oxides.Regardless of the amount of CO contained in the system,the reduction of ZnO to Zn was difficult to proceed below the boiling point(906℃)of Zn.When the reduction temperature is below 906℃,the reduction process of zinc ferrate was ZnFe_(2)_(4)→ZnO;when the reduction temperature is above 906℃,its reduction process becomed ZnFe_(2)_(4)→ZnO→Zn(g).The metallization and dezincification rates of the BFA gradually increased with increasing reaction temperature.As the C/O ratio increased,the metallization and dezincification rates first increased and then decreased.The effect of reduction time on BFA reduction was similar to that of reaction temperature.
基金Project(51404005)supported by the National Natural Science Foundation of China
文摘It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concentration in N_2-CO-H_2 atmosphere with unchanged CO content on reduction swelling behaviors of oxidized pellet at 1173 K were studied, to clarify the mechanism of hydrogen-enriched reduction and exclude the influences of CO. Then, the reduction swelling behaviors of oxidized pellet at 1173 K in actual atmosphere under coke oven gas(COG) injection, got from the simulation results of multi-fluid blast furnace model, were investigated. The results show that with the concentration of hydrogen increasing in N_2-CO-H_2 gas from 2% to 18%, the reduction swelling index of pellet decreases from 10.12% to 5.57% while the reduction ratio of pellet increases obviously from 39.85% to 69.58%. In addition, with COG injection rate increasing from 0 to 152.34 m^3/t, the reduction swelling index of pellet decreases slightly from 10.71% to 9.54% while the reduction ratio of pellet is increased from 31.57% to 36.39%. The microstructures of pellet are transformed from the platy structure to the flocculent structure.
基金Item Sponsored by National Natural Science Foundation of China (60472095)
文摘The gas flow from tuyere to raceway zone by blasting involves three distributional zones, such as dripping, cohesive, and lumpy zone. The gas flow distribution in lumpy zone directly affects the gas utilization ration and smooth operation in the blast furnace. However, the furnace closeness brings about great difficulty in the study of high-temperature gas flow. The charging and blasting system affecting the gas flow and whether the top gas flow distribution could reflect its inner condition as well as the furnace state, such as hanging or scaffolding, which have become the main problems for the research on gas flow. Recently, several researches overseas studied gas flow distribution using the numerical simulation method; however, such a research was rare amongst the natives. In this study, the flow model of gas in cohesive and lumpy zone was established using the numerical simulation software and the gas flow distributions with uniform distribution of burden permeability, scaffolding of wall, and nonuniform charge level were analyzed. As a result, the effects of cohesive zone and lower parts on the gas flow are very limited and the charge level largely affects the distribution of top gas flow. Therefore, it was found that the distribution of top gas flow could hardly reflect the inner gas flow. The process is called "redistribution" effect, which means that the gas flow after passing through the raceway, dripping, and cohesive zone is distributed when it flows into the lumpy zone.
文摘In recent years, there has been a growing interest toward Blast Furnace Gas (BFG) as a low-grade energy source for industrial furnaces. This paper considers the revamping of a galvanic plant furnace converted to BFG from natural gas. In the design of the new system, the ejector on the exhaust line is a critical component. This paper studies the flow behavior of the ejector using a Computational Fluid Dynamics (CFD) analysis. The CFD model is based on a 3D representation of the ejector, using air and exhaust gases as working fluids. This paper is divided in three parts. In the first part, the galvanic plant used as case study is presented and discussed, in the second part the CFD approach is outlined, and in the third part the CFD approach is validated using experimental data and the numerical results are presented and discussed. Different Reynolds-Averaged Navier-Stokes (RANS) turbulence models (k-to SST and k-e Realizable) are evaluated in terms of convergence capability and accuracy in predicting the pressure drop along the ejector. Suggestions for future optimization of the system are also provided.
基金National Key Research and Development Program of China(No.2016YFB0601304).
文摘Blast furnace ironmaking process is the most mature and highly effective process for producing liquid iron.Blast furnace is a gas-solid and gas-solid-liquid countercurrent reactor,and maintaining gas permeability is the precondition of smooth production.Therefore,improving the gas permeability throughout the blast furnace remains a hot issue which is concerned by many metallurgical scholars.According to the research results of many scholars,the dominant factors influencing the gas permeability of different locations in the blast furnace(locations are distinguished according to the morphology change of the burdens)were reviewed.And the strategies for improving the gas permeability of different locations in the blast furnace were summarized based on these dominant influencing factors,such as suppressing the low-temperature reduction degradation of sinter in the lump zone,improving the indirect reduction degree and suppressing the interaction between different burdens.It is hoped to provide both theoretical and practical values for guiding the blast furnace so as to improve smooth operation and smelting efficiency.
基金The author are thankful for the support from the National Natural Science Foundation of China(Nos.U1560203,51704021,and 51274031)Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials.
文摘Based on the stoichiometric method and the free energy minimization method,an ideal model for the reduction of iron oxides by carbon and hydrogen under blast furnace conditions was established,and the reduction efficiency and theoretical energy consumption of the all-carbon blast furnace and the hydrogen-rich blast furnace were compared.The results show that after the reduction reaction is completed at the bottom of the blast furnace,the gas produced by reduction at 1600℃still has a certain excessive reduction capacity,which is due to the hydrogen brought in by the hydrogen-rich blast as well as the excess carbon monoxide generated by the reaction of the coke and the oxygen brought in by the blast.During the process of the gas with excessive reduction capacity rising from the bottom of the blast furnace and gas reduction process,the excessive reduction capacity of the gas gradually decreases with the increase in the dydrogen content in the blast.In the all-carbon blast furnace,the excess gas reduction capacity is the strongest,and the total energy consumption per ton of iron reduction is the lowest.This shows that,for the current operation mode of the blast furnace,adding hydrogen in the blast furnace cannot reduce the consumption of carbon required for reduction per ton of iron,but rather increases the consumption of carbon.
基金supported by the National Natural Science Foundation of China(51734004 and 51704069).
文摘The real-time energy flow data obtained in industrial production processes are usually of low quality.It is difficult to accurately predict the short-term energy flow profile by using these field data,which diminishes the effect of industrial big data and artificial intelligence in industrial energy system.The real-time data of blast furnace gas(BFG)generation collected in iron and steel sites are also of low quality.In order to tackle this problem,a three-stage data quality improvement strategy was proposed to predict the BFG generation.In the first stage,correlation principle was used to test the sample set.In the second stage,the original sample set was rectified and updated.In the third stage,Kalman filter was employed to eliminate the noise of the updated sample set.The method was verified by autoregressive integrated moving average model,back propagation neural network model and long short-term memory model.The results show that the prediction model based on the proposed three-stage data quality improvement method performs well.Long short-term memory model has the best prediction performance,with a mean absolute error of 17.85 m3/min,a mean absolute percentage error of 0.21%,and an R squared of 95.17%.
基金supported by the National Key Technologies R&D Program of China(Grant No.2011BAE04B02)Key Technologies R&D Program of Beijing(Grant No.Z161100000716002)
文摘Top gas recycling oxygen blast furnace(TGR-OBF)process is a promising ironmaking process.The biggest challenge of the TGR-OBF in operation is the dramatic decrease of top gas volume(per ton hot metal),which once led to hanging-up and shutdowns in practice of the Toulachermet.In order to avoid this weakness,the strategy of medium oxygen blast furnace was presented.The maneuverable zone of the TGR-OBF was determined by the top gas volume,which should not be far from the data of the traditional blast furnace.The deviation of ±12.5% was used,and then the maneuverable blast oxygen content is from 0.30 to 0.47 according to the calculation.The flame temperature and the top gas volume have no much difference compared to those of the traditional blast furnace.The minimum carbon consumption of 357 kg per ton hot metal in the maneuverable zone occurs at the oxygen content of 0.30(fuel saving of 14%).In the unsteady evolution,the N2 accumulation could approach nearly zero after the recycling reached 6 times.Thus far,some TGR-OBF industrial trials have been carried out in different countries,but the method of medium oxygen enriched TGR-OBF has not been implemented,because the accumulation of N2 was worried about.The presented strategy of medium oxygen enriched TGR-OBF is applicable and the strategy with good operational performance is strongly suggested as a forerunner of the full oxygen blast furnace.
基金We gratefully acknowledge the support of the National Basic Research Program of China (973 Program) (No. 2012CB720401 ) and the Key Project of National Natural Science Foundation of China (No. 51134008).
文摘lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (51G) flowrate to total gas flowrate on the SIC penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center.
基金Item Sponsored by National Natural Science Foundation of China and Shanghai Baosteel Group Co Ltd United Research Foundation(50374085)
文摘Primary distribution of coal gas in blast furnace raceway has an important effect on blast furnace ironmaking process. The coal gas component concentration distribution was studied experimentally using a three-dimensional cold model. The results showed that CH4 concentration diminishes along with the height increasing on vertical section of raceway, and the concentration is the highest in the bottom of raceway. CH4 concentration increases gradually along.the raceway depth with the lowest concentration value in front of the tuyere. The distribution of CH4 concentration has different characteristics in different raceway zones.