The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneve...The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneven distribution of cooling water in parallel pipes based on hydrodynamic principles,discusses the feasible methods for the improvement of BF cooling intensity,and reviews the pre-paration process,performance,and damage characteristics of three key equipment pieces:coolers,tuyeres,and hearth refractories.Fur-thermoere,to attain better control of these critical components under high-temperature working conditions,we propose the application of optimized technologies,such as BF operation and maintenance technology,self-repair technology,and full-lifecycle management techno-logy.Finally,we propose further researches on safety assessments and predictions for key BF equipment under new operating conditions.展开更多
One of the problems encountered in 60's to 80's of 20th century in China's steel industry was short life of blast furnace shaft as well as the excessive erosion of blast furnace hearth. A series of research work wa...One of the problems encountered in 60's to 80's of 20th century in China's steel industry was short life of blast furnace shaft as well as the excessive erosion of blast furnace hearth. A series of research work was carried out in order to extend blast furnace campaign life. The concept of research and development was integrated in the construction of BF (blast furnace) No. 5 at WISCO (Wuhan Iron and Steel Corporation), and in October, 1991, the BF No. 5 was blown in. The blast furnace has worked smoothly for more than 15 years without any medium repair even guniting. It is expected that the campaign life of BF No. 5 would be longer than 16 years with a production over 11 000 t per unit inner volume (m^2). A new blast furnace with an inner volume of 3 400 m^3 is under construction, and is designed with a campaign life of 20 years without any medium repair. The campaign life of blast furnaces in China has been extended in recent years.展开更多
In 2009,the pig iron output of China increased dramatically up to 543.75 Mt and was 15.87%higher than that in 2008,accounting for 60.53%of the world production.The processing of pig iron must consume huge amount of ir...In 2009,the pig iron output of China increased dramatically up to 543.75 Mt and was 15.87%higher than that in 2008,accounting for 60.53%of the world production.The processing of pig iron must consume huge amount of iron ores and coal and consequently leads to the shortage of ores and cokemaking coals supply,with prices soaring but quality worsening remarkably.How to maintain or even improve the efficiency of blast furnace production under negative conditions of constantly worsening resources of iron ore and coal has become an important scenario the Chinese ironmaking industry must face.In this paper,the production with high coal injection rate,low fuel rate and big productivity in the Wuhan Iron and Steel Corporation(Group) was introduced and revealed.The quantitative correlation between blast furnace production efficiency and diverse technical measures through combined mass-heat balances and gas-liquid counter-current flow dynamics analysis.Moreover,potential problems and countermeasures in ironmaking by feeding high Al_2O_3 and low grade iron ores were also discussed.展开更多
A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast...A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium-bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, andistribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each componenFinally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layemainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phaswhose major crystalline phase is magnesium melilite(Ca2Mg Si2O7) and the main source of the slag phase is coke ash. It is clearly determinethat solid particles such as graphite, Ti(C,N) and Mg Al2O4play an important role in the formation of the protective layer, and the key factofor promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.展开更多
A monitoring method that has been designed for the first time for blast furnace wall with copper staves manufactured in China was introduced. Combining the method of "inverse problem" and the concept "non-inverse p...A monitoring method that has been designed for the first time for blast furnace wall with copper staves manufactured in China was introduced. Combining the method of "inverse problem" and the concept "non-inverse problem", the monitoring program for blast furnace wall with copper staves has been realized, which can be used to calculate online the accretion thickness and temperature of hot surface of copper staves after obtaining the values of thermocouples of copper staves. The accretion state obtained in the actual investigation has proved that the result of the program is correct. The monitoring program shows that the accretion would easily fluctuate when the accretion layer is extremely thick or thin, thereby the stable and smooth operation of the blast furnace is hindered. By maintaining appropriate accretion thickness, both long campaigns and high productivity of the blast furnace can be achieved; furthermore, it can also optimize the operation of blast furnace and maximize its production. Approximately 30--50 mm in thickness of accretion layer is maintained on the wall of Shougang blast furnace 2, which can meet the requirement for obtaining both long campaign and high productivity.展开更多
A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estim...A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase ~om hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face tem- perature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.展开更多
At the beginning of 1990s, Shougang blast furnaces (BFs) No. 2, No. 4, No. 3 and No. 1 were rebuilt se quently for new technological modernization in succession. The campaign life of BFs No. 1, No. 3 and No. 4 reach...At the beginning of 1990s, Shougang blast furnaces (BFs) No. 2, No. 4, No. 3 and No. 1 were rebuilt se quently for new technological modernization in succession. The campaign life of BFs No. 1, No. 3 and No. 4 reaches 16.4, 17.6 and 15.6 years, respectively, and the hot metal output of one campaign reaches 33.8, 35.48 and 26.37 Mt, respectively; the hot metal output of BF effective volume of one campaign reaches 13328, 13991 and 12560 t/m^3, respectively, which reaches the international advanced level of BF high efficiency and long campaign life. In BF desig-ning, several advanced BF long campaign technologies were adopted. BF proper inner profile was optimized, reasona- ble inner profile was adopted, and closed circulating soften water cooling technology was applied in 4 BFs. Double row cooling pipe high efficiency cooling stave was developed which could prolong the service life of bosh, belly and stack. Hot pressed carbon brick and ceramic cup hearth lining structure were applied and optimized. BF operation was improved continuously to ensure stable and smooth operation of BF. Hearth working condition control was strengthened, burden distribution control technology was applied to achieve reasonable distribution of gas flow, and heat load monitoring was strengthened to maintain BF reasonable working inner profile. Proper maintenance at the end of BF campaign was enhanced. Hearth and bottom service life was prolonged by adding titaniferous material and enhancing hearth cooling. Gunning of lining was carried out periodically for the area above tuyere zone.展开更多
基金supported by the National Natural Science Foundation of China(No.52174296)the Key Laboratory of Metallurgical Industry Safety&Risk Prevention and Control,Ministry of Emergency Management,China.
文摘The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneven distribution of cooling water in parallel pipes based on hydrodynamic principles,discusses the feasible methods for the improvement of BF cooling intensity,and reviews the pre-paration process,performance,and damage characteristics of three key equipment pieces:coolers,tuyeres,and hearth refractories.Fur-thermoere,to attain better control of these critical components under high-temperature working conditions,we propose the application of optimized technologies,such as BF operation and maintenance technology,self-repair technology,and full-lifecycle management techno-logy.Finally,we propose further researches on safety assessments and predictions for key BF equipment under new operating conditions.
文摘One of the problems encountered in 60's to 80's of 20th century in China's steel industry was short life of blast furnace shaft as well as the excessive erosion of blast furnace hearth. A series of research work was carried out in order to extend blast furnace campaign life. The concept of research and development was integrated in the construction of BF (blast furnace) No. 5 at WISCO (Wuhan Iron and Steel Corporation), and in October, 1991, the BF No. 5 was blown in. The blast furnace has worked smoothly for more than 15 years without any medium repair even guniting. It is expected that the campaign life of BF No. 5 would be longer than 16 years with a production over 11 000 t per unit inner volume (m^2). A new blast furnace with an inner volume of 3 400 m^3 is under construction, and is designed with a campaign life of 20 years without any medium repair. The campaign life of blast furnaces in China has been extended in recent years.
文摘In 2009,the pig iron output of China increased dramatically up to 543.75 Mt and was 15.87%higher than that in 2008,accounting for 60.53%of the world production.The processing of pig iron must consume huge amount of iron ores and coal and consequently leads to the shortage of ores and cokemaking coals supply,with prices soaring but quality worsening remarkably.How to maintain or even improve the efficiency of blast furnace production under negative conditions of constantly worsening resources of iron ore and coal has become an important scenario the Chinese ironmaking industry must face.In this paper,the production with high coal injection rate,low fuel rate and big productivity in the Wuhan Iron and Steel Corporation(Group) was introduced and revealed.The quantitative correlation between blast furnace production efficiency and diverse technical measures through combined mass-heat balances and gas-liquid counter-current flow dynamics analysis.Moreover,potential problems and countermeasures in ironmaking by feeding high Al_2O_3 and low grade iron ores were also discussed.
基金financially supported by the Natural Science Foundation of China(No.51304014)the Natural Science Foundation of China and Baosteel(No.51134008)the National Basic Research Program of China(No.2012CB720401)
文摘A variety of techniques, such as chemical analysis, scanning electron microscopy-energy dispersive spectroscopy, and X-ray diffraction, were applied to characterize the adhesion protective layer formed below the blast furnace taphole level when a certain amount of titanium-bearing burden was used. Samples of the protective layer were extracted to identify the chemical composition, phase assemblage, andistribution. Furthermore, the formation mechanism of the protective layer was determined after clarifying the source of each componenFinally, a technical strategy was proposed for achieving a stable protective layer in the hearth. The results show that the protective layemainly exists in a bilayer form in the sidewall, namely, a titanium-bearing layer and a graphite layer. Both the layers contain the slag phaswhose major crystalline phase is magnesium melilite(Ca2Mg Si2O7) and the main source of the slag phase is coke ash. It is clearly determinethat solid particles such as graphite, Ti(C,N) and Mg Al2O4play an important role in the formation of the protective layer, and the key factofor promoting the formation of a stable protective layer is reasonable control of the evolution behavior of coke.
基金Item Sponsored by National Natural Science Foundation of China(60472095)
文摘A monitoring method that has been designed for the first time for blast furnace wall with copper staves manufactured in China was introduced. Combining the method of "inverse problem" and the concept "non-inverse problem", the monitoring program for blast furnace wall with copper staves has been realized, which can be used to calculate online the accretion thickness and temperature of hot surface of copper staves after obtaining the values of thermocouples of copper staves. The accretion state obtained in the actual investigation has proved that the result of the program is correct. The monitoring program shows that the accretion would easily fluctuate when the accretion layer is extremely thick or thin, thereby the stable and smooth operation of the blast furnace is hindered. By maintaining appropriate accretion thickness, both long campaigns and high productivity of the blast furnace can be achieved; furthermore, it can also optimize the operation of blast furnace and maximize its production. Approximately 30--50 mm in thickness of accretion layer is maintained on the wall of Shougang blast furnace 2, which can meet the requirement for obtaining both long campaign and high productivity.
基金supported the National Science Foundation for Young Scientists of China (No. 51304014)the Open Foundation of the State Key Laboratory of Advanced Metallurgy (No. 41603007)
文摘A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase ~om hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face tem- perature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.
文摘At the beginning of 1990s, Shougang blast furnaces (BFs) No. 2, No. 4, No. 3 and No. 1 were rebuilt se quently for new technological modernization in succession. The campaign life of BFs No. 1, No. 3 and No. 4 reaches 16.4, 17.6 and 15.6 years, respectively, and the hot metal output of one campaign reaches 33.8, 35.48 and 26.37 Mt, respectively; the hot metal output of BF effective volume of one campaign reaches 13328, 13991 and 12560 t/m^3, respectively, which reaches the international advanced level of BF high efficiency and long campaign life. In BF desig-ning, several advanced BF long campaign technologies were adopted. BF proper inner profile was optimized, reasona- ble inner profile was adopted, and closed circulating soften water cooling technology was applied in 4 BFs. Double row cooling pipe high efficiency cooling stave was developed which could prolong the service life of bosh, belly and stack. Hot pressed carbon brick and ceramic cup hearth lining structure were applied and optimized. BF operation was improved continuously to ensure stable and smooth operation of BF. Hearth working condition control was strengthened, burden distribution control technology was applied to achieve reasonable distribution of gas flow, and heat load monitoring was strengthened to maintain BF reasonable working inner profile. Proper maintenance at the end of BF campaign was enhanced. Hearth and bottom service life was prolonged by adding titaniferous material and enhancing hearth cooling. Gunning of lining was carried out periodically for the area above tuyere zone.