Numerical simulation of the process of rock fragmentation by blasting with different kinds of explosives is carried out by using the damage model of rock fragmentation and a finite difference program "SHALE"...Numerical simulation of the process of rock fragmentation by blasting with different kinds of explosives is carried out by using the damage model of rock fragmentation and a finite difference program "SHALE". The research shows that the process and pattern of rock fragmentation by blasting vary with the parameters of explosives in the same kind of rock and under the same conditions, and that the effects of stress wave and the detonated gas change clearly. A new conception about the mechanism of blasting is dealt with,i. e. the mechanism of rock blasting fragmentation is related to the explosive parameters as well as the conditions of blasting. The mechanism and process of rock blasting fragmeutation can be influenced or changed by the changes of blasting parameters and conditions. This theory could be used to guide the practice and parameter design of engineering blasting.展开更多
Eccentric decoupling blasting is commonly used in underground excavation.Determination of perimeter hole parameters(such as the blasthole diameter,spacing,and burden)based on an eccentric charge structure is vital for...Eccentric decoupling blasting is commonly used in underground excavation.Determination of perimeter hole parameters(such as the blasthole diameter,spacing,and burden)based on an eccentric charge structure is vital for achieving an excellent smooth blasting effect.In this paper,the Riedel-Hiermaier-Thoma(RHT)model was employed to study rock mass damage under smooth blasting.Firstly,the parameters of the RHT model were calibrated by using the existing SHPB experiment,which were then verified by the existing blasting experiment results.Secondly,the influence of different charge structures on the blasting effect was investigated using the RHT model.The simulation results indicated that eccentric charge blasting has an obvious pressure eccentricity effect.Finally,to improve the blasting effect,the smooth blasting parameters were optimized based on an eccentric charge structure.The overbreak and underbreak phenomena were effectively controlled,and a good blasting effect was achieved with the optimized blasting parameters.展开更多
To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are govern...To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results.展开更多
A surface gold mine wishes to develop a new pit (Pit A) as part of its mining schedules. The proposed pit outline is about 300 m to the closest community. Blasting operations in Pit A would potentially create undesira...A surface gold mine wishes to develop a new pit (Pit A) as part of its mining schedules. The proposed pit outline is about 300 m to the closest community. Blasting operations in Pit A would potentially create undesirable environmental impacts including fly rocks, ground vibrations and air blasts to neighbouring communities. Integration of proper planning tools or protocols for blasting at Pit A is the major concern of the Mine. Due to safety reasons, management wishes to explore the best blasting protocols that will restrain any blast impact to a 250 m buffer from the proposed pit outline. The Kuz-Ram fragmentation model was used to generate the optimal geometric parameters required for blasting at Pit A. Ground vibration, air blasts and fly rock impact prediction models were used to estimate the associated blast impacts to the neighbouring community. The predictions were made for blasting the oxides, transition and fresh rock formations to be encountered in Pit A. The predicted ground vibration and air blast levels were compared with the Ghanaian regulatory threshold of 2 mm/s. The predicted maximum fly rock distance (235 m) from the pit outline is within the established 250 m clearance buffer zone. The geometric drill and blast parameters and associated single-hole firing charges were used in the prediction models. The predicted results from this study will assist the surface gold mine to properly execute safe blasting operations with minimal impact to the neighbouring community. Due to known scattering of NONEL explosives in initiation systems, electronic initiation systems are recommended for blasting in the new pit.展开更多
文摘Numerical simulation of the process of rock fragmentation by blasting with different kinds of explosives is carried out by using the damage model of rock fragmentation and a finite difference program "SHALE". The research shows that the process and pattern of rock fragmentation by blasting vary with the parameters of explosives in the same kind of rock and under the same conditions, and that the effects of stress wave and the detonated gas change clearly. A new conception about the mechanism of blasting is dealt with,i. e. the mechanism of rock blasting fragmentation is related to the explosive parameters as well as the conditions of blasting. The mechanism and process of rock blasting fragmeutation can be influenced or changed by the changes of blasting parameters and conditions. This theory could be used to guide the practice and parameter design of engineering blasting.
基金Projects(11802058,52074262)supported by the National Natural Science Foundation of ChinaProjects(BK20170670,BK20180651)supported by the Jiangsu Youth Foundation,China+2 种基金Project(2020QN06)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(SKLGDUEK1803)supported by the State Key Laboratory for Geomechanics and Deep Underground Engineering,ChinaProject supported by the Mass Entrepreneurship and Innovation Project of Jiangsu,China。
文摘Eccentric decoupling blasting is commonly used in underground excavation.Determination of perimeter hole parameters(such as the blasthole diameter,spacing,and burden)based on an eccentric charge structure is vital for achieving an excellent smooth blasting effect.In this paper,the Riedel-Hiermaier-Thoma(RHT)model was employed to study rock mass damage under smooth blasting.Firstly,the parameters of the RHT model were calibrated by using the existing SHPB experiment,which were then verified by the existing blasting experiment results.Secondly,the influence of different charge structures on the blasting effect was investigated using the RHT model.The simulation results indicated that eccentric charge blasting has an obvious pressure eccentricity effect.Finally,to improve the blasting effect,the smooth blasting parameters were optimized based on an eccentric charge structure.The overbreak and underbreak phenomena were effectively controlled,and a good blasting effect was achieved with the optimized blasting parameters.
文摘To model the damage process of masonry walls under blast loading, a dynamic continuum damage material model is constructed for brick and mortar separately. The degradation of both the stiffness and strength are governed by a damage variable. By using the proposed material model, damage and fragmentation of a typical masonry wall under blast loading at different scaled distances is calculated. The hazard level of the masonry wall to blast loading is evaluated by analyzing the numerical results.
文摘A surface gold mine wishes to develop a new pit (Pit A) as part of its mining schedules. The proposed pit outline is about 300 m to the closest community. Blasting operations in Pit A would potentially create undesirable environmental impacts including fly rocks, ground vibrations and air blasts to neighbouring communities. Integration of proper planning tools or protocols for blasting at Pit A is the major concern of the Mine. Due to safety reasons, management wishes to explore the best blasting protocols that will restrain any blast impact to a 250 m buffer from the proposed pit outline. The Kuz-Ram fragmentation model was used to generate the optimal geometric parameters required for blasting at Pit A. Ground vibration, air blasts and fly rock impact prediction models were used to estimate the associated blast impacts to the neighbouring community. The predictions were made for blasting the oxides, transition and fresh rock formations to be encountered in Pit A. The predicted ground vibration and air blast levels were compared with the Ghanaian regulatory threshold of 2 mm/s. The predicted maximum fly rock distance (235 m) from the pit outline is within the established 250 m clearance buffer zone. The geometric drill and blast parameters and associated single-hole firing charges were used in the prediction models. The predicted results from this study will assist the surface gold mine to properly execute safe blasting operations with minimal impact to the neighbouring community. Due to known scattering of NONEL explosives in initiation systems, electronic initiation systems are recommended for blasting in the new pit.