期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Vibration Effect and Damage Evolution Characteristics of Tunnel Surrounding Rock Under Cyclic Blasting Loading 被引量:1
1
作者 Guosheng Zhong Yongzhong Lou Yuhua Fu 《Journal of Beijing Institute of Technology》 EI CAS 2017年第3期324-333,共10页
Model test studies based on the similarity theory were conducted to investigate vibration effect and damage evolution characteristics of tunnel surrounding rock under push-type cyclic blasting excavation.The model was... Model test studies based on the similarity theory were conducted to investigate vibration effect and damage evolution characteristics of tunnel surrounding rock under push-type cyclic blasting excavation.The model was constructed with a ratio of 1∶15.By simulating the tunnel excavation of push-type cyclic blasting,the influence of the blasting parameter change on vibration effect was explored.The damage degree of tunnel surrounding rock was evaluated by the change of the acoustic wave velocity at the same measuring point after blasting.The relationship between the damage evolution of surrounding rock and blasting times was established.The research results show that:(1)In the same geological environment,the number of delay initiation is larger,the main vibration frequency of blasting seismic wave is higher,and the attenuation of high frequency signal in the rock and soil is faster.The influence of number of delay initiation on blasting vibration effect cannot be ignored;(2)Under push-type cyclic blasting excavation,there were great differences in the decreasing rates of acoustic wave velocity of the measuring points which have the same distance to the blasting region at the same depth,and the blasting damage ranges of surrounding rock were typically anisotropic at both depth and breadth;(3)When blasting parameters were basically kept as the same,the growth trend of the cumulative acoustic wave velocity decreasing rate at the measuring point was nonlinear under different cycle blasting excavations;(4)There were nonlinear evolution characteristics between the blasting cumulative damage(D)of surrounding rock and blasting times(n)under push-type cyclic blasting loading,and different measuring points had corresponding blasting cumulative damage propagation models,respectively.The closer the measuring point was away from the explosion source,the faster the cumulative damage extension.Blasting cumulative damage effect of surrounding rock had typically nonlinear evolution properties and anisotropic characteristics. 展开更多
关键词 cyclic blasting loading tunnel excavation vibration effect surrounding rock damage
下载PDF
Transient responses of double-curved sandwich two-layer shells resting on Kerr's foundations with laminated three-phase polymer/GNP/fiber surface and auxetic honeycomb core subjected to the blast load
2
作者 Nguyen Thi Hai Van Thi Hong Nguyen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期222-247,共26页
This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fib... This work uses refined first-order shear theory to analyze the free vibration and transient responses of double-curved sandwich two-layer shells made of auxetic honeycomb core and laminated three-phase polymer/GNP/fiber surface subjected to the blast load.Each of the two layers that make up the double-curved shell structure is made up of an auxetic honeycomb core and two laminated sheets of three-phase polymer/GNP/fiber.The exterior is supported by a Kerr elastic foundation with three characteristics.The key innovation of the proposed theory is that the transverse shear stresses are zero at two free surfaces of each layer.In contrast to previous first-order shear deformation theories,no shear correction factor is required.Navier's exact solution was used to treat the double-curved shell problem with a single title boundary,while the finite element technique and an eight-node quadrilateral were used to address the other boundary requirements.To ensure the accuracy of these results,a thorough comparison technique is employed in conjunction with credible statements.The problem model's edge cases allow for this kind of analysis.The study's findings may be used in the post-construction evaluation of military and civil works structures for their ability to sustain explosive loads.In addition,this is also an important basis for the calculation and design of shell structures made of smart materials when subjected to shock waves or explosive loads. 展开更多
关键词 Blast load Two-layer shell Polymer/GNP/Fiber surface Auxetic honeycomb Shear connectors
下载PDF
Dynamic response of UHMWPE plates under combined shock and fragment loading 被引量:1
3
作者 Chun-Zheng Zhao Lu-Sheng Qiang +4 位作者 Rui Zhang Qian-Cheng Zhang Jun-Yang Zhong Zhen-Yu Zhao Tian Jian Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期9-23,共15页
Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subject... Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subjected to combined blast and fragment impacts.Built upon a recently developed laboratory-scale experimental technique to generate simulated combined loading through the impact of a fragment-foam composite projectile launched from a light gas gun,the dynamic responses of fullyclamped UHMWPE plates subjected to combined loading were characterized experimentally,with corresponding deformation and failure modes compared with those measured with simulated blast loading alone.Subsequently,to explore the underlying physical mechanisms,three-dimensional(3D)numerical simulations with the method of finite elements(FE)were systematically carried out.Numerical predictions compared favorably well with experimental measurements,thus validating the feasibility of the established FE model.Relative to the case of blast loading alone,combined blast and fragment loading led to larger maximum deflections of clamped UHMWPE plates.The position of the FSP in the foam sabot affected significantly the performance of a UHMWPE target,either enhancing or decreasing its ballistic resistance.When the blast loading and fragment impact arrived simultaneously at the target,its ballistic resistance was superior to that achieved when subjected to fragment impact alone,and benefited from the accelerated movement of the target due to simultaneous blast loading. 展开更多
关键词 UHMWPE composite Ballistic performance Combined blast and fragment loading Impact test Finite element simulation
下载PDF
Modeling the blast load induced by a close-in explosion considering cylindrical charge parameters
4
作者 Yi Fan Li Chen +2 位作者 Zhan Li Heng-bo Xiang Qin Fang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期83-108,共26页
Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field exper... Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field experiments and a systematic numerical analysis were conducted.A high-fidelity finite element model developed using AUTODYN was first validated using blast data collected from field tests conducted in this and previous studies.A quantitative analysis was then performed to determine the influence of the charge shape,aspect ratio(length to diameter),orientation,and detonation configuration on the characteristics and distributions of the blast loading(incident peak overpressure and impulse)according to scaled distance.The results revealed that the secondary peak overpressure generated by a cylindrical charge was mainly distributed along the axial direction and was smaller than the overpressure generated by an equivalent spherical charge.The effects of charge shape on the blast loading at 45°and 67.5°in the axial plane could be neglected at scaled distances greater than 2 m/kg^(1/3);the effect of aspect ratios greater than 2 on the peak overpressure in the 90°(radial)direction could be neglected at all scaled distances;and double-end detonation increased the radial blast loading by up to 60%compared to singleend detonation.Finally,an empirical cylindrical charge blast loading model was developed considering the influences of charge aspect ratio,orientation,and detonation configuration.The results obtained in this study can serve as a reference for the design of blast tests using cylindrical charges and aid engineers in the design of blast-resistant structures. 展开更多
关键词 Cylindrical charge Secondary peak overpressure Aspect ratio ORIENTATION Detonation initiation point Blast loading model
下载PDF
Sensitivity analysis and probability modelling of the structural response of a single-layer reticulated dome subjected to an external blast loading
5
作者 Shao-bo Qi Guang-yan Huang +1 位作者 Xu-dong Zhi Feng Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期152-163,共12页
The structural response of a single-layer reticulated dome to external explosions is shaped by many variables,and the associated uncertainties imply non-deterministic results.Existing deterministic methods for predict... The structural response of a single-layer reticulated dome to external explosions is shaped by many variables,and the associated uncertainties imply non-deterministic results.Existing deterministic methods for predicting the consequences of specific explosions do not account for these uncertainties.Therefore,the impact of the uncertainties associated with these input variables on the structures’response needs to be studied and quantified.In this study,a parametric uncertainty analysis was conducted first.Then,local and global sensitivity analyses were carried out to identify the drivers of the structural dynamic response.A probabilistic structural response model was established based on sensitive variables and a reasonable sample size.Furthermore,some deterministic empirical methods for explosion-resistance design,including the plane blast load model of CONWEP,the curved blast load model under the 50%assurance level,and the 20%mass-increased method,were used for evaluating their reliability.The results of the analyses revealed that the structural response of a single-layer reticulated dome to an external blast loading is lognormally distributed.Evidently,the MB0.5 method based on the curved reflector load model yielded results with a relatively stable assurance rate and reliability,but CONWEP did not;thus,the 1.2MB0.5 method can be used for making high-confidence simple predictions.In addition,the results indicated that the structural response is very sensitive to the explosion parameters.Based on these results,it is suggested that for explosion proofing,setting up a defensive barrier is more effective than structural strengthening. 展开更多
关键词 Dome structure Blast load uncertainty Sensitivity analysis Probabilistic investigation Reliability evaluation
下载PDF
Mesoscopic modelling of UHPCC material under dynamic tensile loadings
6
作者 Xiang-zhen Kong Shang-bin Yang +3 位作者 Tao Zhang Qin Fang Heng-bo Xiang Rui-wen Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期75-91,共17页
This paper presents a new 3D mesoscopic model of ultra-high performance cement-based composite(UHPCC)to investigate its dynamic tensile behavior.In this model,the UHPCC is regarded as a two-phase material composed of ... This paper presents a new 3D mesoscopic model of ultra-high performance cement-based composite(UHPCC)to investigate its dynamic tensile behavior.In this model,the UHPCC is regarded as a two-phase material composed of cementitious matrix and randomly distributed fibers.The model is established using the commercial software LS-DYNA and involves generating the randomly distributed fiber elements with considerations of diameter,length,orientation and volume fraction,and then fully constraining them with the matrix.In particular,to capture the slipping effect between fibers and matrix that has a strong influence on the dynamic tensile behavior,the fibers are modelled by a fictitious material represented by the load-slip relation.The strain-rate effect of slipping force neglected in most of previous studies is considered by calibrating constitutive parameters of the fictitious material under different strain-rates based on the single fiber pullout tests.Finally,the 3D mesoscopic model is validated against three sets of tension-dominated experiments covered a wide range of loading intensity.Numerical predictions demonstrate that strain-rate effect of slipping force must be considered,and the neglect of it may lead to a great underestimation of the dynamic tensile strength of UHPCC material and would unavoidably underestimate the blast resistance of UHPCC components. 展开更多
关键词 UHPCC Dynamic tensile behavior Mesoscopic model Strain-rate effect Impact and blast loadings
下载PDF
Numerical Study on the Behaviour of Hybrid FRPs Reinforced RC Slabs Subjected to Blast Loads
7
作者 Mahdi Hosseini Bingyu Jian +7 位作者 Jian Zhang Haitao Li Rodolfo Lorenzo Ahmad Hosseini Pritam Ghosh Feng Shen Dong Yang Ziang Wang 《Journal of Renewable Materials》 EI 2023年第9期3517-3531,共15页
The safety of civilian and military infrastructure is a concern due to an increase in explosive risks,which has led to a demand for high-strength civil infrastructure with improved energy absorption capacity.In this s... The safety of civilian and military infrastructure is a concern due to an increase in explosive risks,which has led to a demand for high-strength civil infrastructure with improved energy absorption capacity.In this study,a Finite Element(FE)numerical model was developed to determine the effect of hybrid Fibre Reinforced Polymer(FRP)as a strengthening material on full-scale Reinforced Concrete(RC)slabs.The reinforcing materials under consideration were Carbon(CFRP)and Glass(GFRP)fibres,which were subjected to blast loads to determine the structural response.A laminated composite fabric material model was utilized to model the failure of composite,which facilitates the consideration of strain rate effects.The damaged area of the laminate is determined in the FE model,and it is in good agreement with the corresponding experimental results in the literature.Models containing different stacking sequences were built to demonstrate their efficiency in resisting blast loads.In general,the damaged area was reduced when a hybrid reinforcement with CFRP as the top layer was used. 展开更多
关键词 Composite damage blast load CFRP GFRP finite element analysis on LS-DYNA
下载PDF
Dynamic caustics test of blast load impact on neighboring different cross-section roadways 被引量:5
8
作者 Guo Dongming Zhou Baowei +2 位作者 Liu Kang Yang Renshu Yan Pengyang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第5期803-808,共6页
Using digital laser dynamic caustics experimental system and conducting simulation experiment researched the influence rule of blasting excavation of a new roadway on neighboring existed different cross-section roadwa... Using digital laser dynamic caustics experimental system and conducting simulation experiment researched the influence rule of blasting excavation of a new roadway on neighboring existed different cross-section roadways. The experimental results show that the influence of blast load on adjacent roadway has a good relationship with the cross-section of roadway. The expansion distance of precrack existed in circular, arch-wall, rectangular roadway is respectively 1.76, 1.61 and 0 cm under blast load.At the same time, the direct-blast side of rectangular roadway has more obvious damage compared with circular and arch-wall roadway. It explains that plane reflects more stress wave than arc, so that it exerts more tensile failure in the direct-blast side, which leads to less stress wave diffracting to the precrack in the back-blast side. When the precrack extends, higher value dynamic stress intensity factor in circular roadway works longer than that of arch-wall roadway. Indirectly, it explains that plane's weakening function on stress wave is significantly stronger than arc. Stress wave brings about self-evident influence on the upper and bottom endpoints of the rectangular roadway, and it respectively extends 1.03, 2.06 cm along the line link direction of the center of the blasthole and the upper and bottom endpoints on the right wall. 展开更多
关键词 Dynamic caustics Blast load Different cross-section roadways Precrack Dynamic stress intensity factor
下载PDF
Numerical investigation on free air blast loads generated from center-initiated cylindrical charges with varied aspect ratio in arbitrary orientation 被引量:2
9
作者 Chu Gao Xiang-zhen Kong +2 位作者 Qin Fang Jian Hong Yin Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1662-1678,共17页
In current guidelines, the free air blast loads(overpressure and impulse) are determined by spherical charges, although most of ordnance devices are more nearly cylindrical than spherical in geometry. This may result ... In current guidelines, the free air blast loads(overpressure and impulse) are determined by spherical charges, although most of ordnance devices are more nearly cylindrical than spherical in geometry. This may result in a great underestimation of blast loads in the near field and lead to an unsafe design.However, there is still a lack of systematic quantitative analysis of the blast loads generated from cylindrical charges. In this study, a numerical model is developed by using the hydrocode AUTODYN to investigate the influences of aspect ratio and orientation on the free air blast loads generated from center-initiated cylindrical charges. This is done by examining the pressure contours, the peak overpressures and impulses for various aspect ratios ranged from 1 to 8 and arbitrary orientation monitored along every azimuth angle with an interval of 5°. To characterize the distribution patterns of blast loads,three regions, i.e., the axial region, the vertex region and the radial region are identified, and the propagation of blast waves in each region is analyzed in detail. The complexity of blast loads of cylindrical charges is found to result from the bridge wave and its interaction with primary waves. Several empirical formulas are presented based on curve-fitting the numerical data, including the orientation where the maximum peak overpressure emerges, the critical scaled distance beyond which the charge shape effect could be neglected and blast loads with varied aspect ratio in arbitrary orientation, all of which are useful for blast-resistant design. 展开更多
关键词 Cylindrical charge Blast loads Aspect ratio Azimuth angle Bridge wave
下载PDF
Analytical Solutions to Strain Rates of Reinforced Concrete Simply Supported Slabs under Blast Loads 被引量:1
10
作者 孙文彬 WU Cheng—qing 《Journal of Southwest Jiaotong University(English Edition)》 2009年第3期212-217,共6页
Based on the Duhamel integral, a couple of analytical solutions are derived to predict the strain rates of concrete and steel reinforcement in reinforced concrete slabs under blast loads and to estimate their variatio... Based on the Duhamel integral, a couple of analytical solutions are derived to predict the strain rates of concrete and steel reinforcement in reinforced concrete slabs under blast loads and to estimate their variation over depth of a cross-section along the entire length of the member. The analytical approach utilizes the single-degree-of-freedom mode for the analysis of reinforced concrete simply supported one-way panels subjected to blast loads. These analytical solutions can give the strain rate profile for any cross-section at any time and permit variations of strain rate in each time step of numerical iteration method, thus making it possible to directly incorporate strain rate effects into non-linear dynamic response analysis of structural members subjected to blast loads. 展开更多
关键词 Reinforced concrete Simply supported slab Blast load SDOF Duhamel integral Strain rate Analytical solution
下载PDF
Analysis of blasting damage in adjacent mining excavations 被引量:3
11
作者 Nick Yugo Woo Shin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第3期282-290,共9页
Following a small-scale wedge failure at Yukon Zinc's Wolverine Mine in Yukon, Canada, a vibration monitoring program was added to the existing rockbolt pull testing regime. The failure in the 1150 drift occurred aft... Following a small-scale wedge failure at Yukon Zinc's Wolverine Mine in Yukon, Canada, a vibration monitoring program was added to the existing rockbolt pull testing regime. The failure in the 1150 drift occurred after numerous successive blasts in an adjacent tunnel had loosened friction bolts passing through an unmapped fault. Analysis of blasting vibration revealed that support integrity is not compromised unless there is a geological structure to act as a failure plane. The peak particle velocity(PPV) rarely exceeded 250 mm/s with a frequency larger than 50 Hz. As expected, blasting more competent rock resulted in higher PPVs. In such cases, reducing the round length from 3.5 m to 2.0 m was an effective means of limiting potential rock mass and support damage. 展开更多
关键词 blasting damage Vibration monitoring Adjacent tunnel development Dynamic loading of friction bolts Jinduicheng Molybdenum Wolver
下载PDF
Numerical damage evaluation of perforated steel columns subjected to blast loading
12
作者 Mahmoud T.Nawar Ibrahim T.Arafa Osama M.Elhosseiny 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第5期735-746,共12页
The structural performance of perforated steel columns(PSCs)is significantly more complex than the one of solid web I-shaped elements under the diversity of blast loading scenarios.The damage criterion of PSCs is not ... The structural performance of perforated steel columns(PSCs)is significantly more complex than the one of solid web I-shaped elements under the diversity of blast loading scenarios.The damage criterion of PSCs is not only related to initial deformation response during the blast but also the residual axial load capacity and it can be considered as a reliable index after the blast effects.Therefore,the PSCs damages will be studied in two stages;direct and post blast effects.In the present study,the dynamic response of PSCs was numerically evaluated under different levels of blast threats using LS-DYNA software.Extensive explicit finite element(FE)analyses are carried out to investigate the effect of various parameters,such as web opening shapes,boundary conditions and strengthening details on the damage index and toughness of the PSCs compared to the parent steel sections.The results of the comparative study show that the damage and toughness decrease when the support condition changes from pinned to fixed ends through the two stages of loadings.PSCs give high toughness compared to its parent sections during blast shock stage while,a remarkable decrease in toughness is observed during the application of axial gravity after blast shock.Furthermore,the web opening shapes have slight effects on the global dynamic behavior of PSCs,particularly in terms of residual capacity.On the contrary,the retrofitting strategy using both closed holes at end and vertical stiffeners have an effective enhancement to get higher toughness in case of the extreme blasts. 展开更多
关键词 Perforated steel columns Blast load Damage criterion Numerical modeling Explicit finite element analysis Web-opening shapes
下载PDF
External blast load factors for dome structures based on reliability
13
作者 Shao-bo Qi Guang-yan Huang +2 位作者 Xu-dong Zhi Feng Fan Richard GJFlay 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第2期170-182,共13页
Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design consid... Dome structures have been used extensively for industrial,residential,and military infrastructure.Therefore,it is necessary to understand the damage risk potential for such structures for blast-resistant design considerations.This paper investigates the effect of blast load variability on the design value and the structural dynamic response.Therefore,the sources of uncertainty in the external blast load on dome structures were discussed firstly.Then based on the probabilistic blast load model for the dome,the rationality of a deterministic mass-increase safety method was assessed.It was found that previous deterministic design method cannot provide a consistent and sound assurance factor or reliability index on the entire dome roof.In addition,it was also proved that the assurance-based load method fails to ensure compliance with structural safety design standards on the dome roof when compared with the reliability-based blast method.A sensitivity analysis on the probabilistic blast load was conducted,and the results indicate that stand-off distance and explosive mass both act as dominant sources to influence the mean and variability of blast load.Therefore,based on the Latin hypercube sampling method,a reliability-based external blast load factor technique was proposed.This technique was further used to estimate structural damage levels of a single-layer reticulated dome under different reliability requirements,associated with a low,medium,and high level of protection grades for a specific explosion scenario,and it indicated that this technique can be useful in the building design to achieve a higher structural anti-explosion capacity.This study herein can serve as a reference for the calculation method of designed blast load. 展开更多
关键词 Dome structure Airblast variability Deterministic design Assurance factor Reliability-based blast load factor Structural damage levels
下载PDF
Responses of HFR-LWC beams under close-range blast loadings accompanying membrane action
14
作者 Wan-xiang Chen Li-sheng Luo +1 位作者 Zhi-kun Guo Peng Yuan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第6期1167-1187,共21页
The load-carrying capacities and failure patterns of reinforced concrete components can be significantly changed by membrane effects.However,limited work has been carried out to investigate the blast resistance of Hyb... The load-carrying capacities and failure patterns of reinforced concrete components can be significantly changed by membrane effects.However,limited work has been carried out to investigate the blast resistance of Hybrid Fiber Reinforced Lightweight Aggregate Concrete(HFR-LWC)members accompanying membrane action.This paper presents a theoretical approach to quantitatively depicting the membrane behavior and its contribution on the behavior of HFR-LWC beams under close-range blast loadings,and the suitability of the proposed model is validated by a series of field tests.An improved Single-Degree-of-Freedom(SDOF)model was employed to describe the dynamic responses of beam-like members under blast loadings accompanying membrane action,where the mass-load coefficient is determined according to the nonuniformly distributed load induced by close-range explosion,and the membrane action is characterized by an in-plane(longitudinal)force and a resisting moment.The elastoplastic and recovery responses of HFR-LWC beams under the combined action of blast load and membrane force were analyzed by the promoted model.A specially built end-constrain clamp was developed to provide membrane action for the beam member when they are subjected to blast load simultaneously.It is demonstrated that the analytical displacement-time histories are in good agreement with experimental results before peak deflections and that the improved SDOF model is an acceptable tool for predicting the behavior of HFR-LWC beams under blast loadings accompanying membrane action. 展开更多
关键词 Blast load Membrane action HFR-LWC beam Dynamic response Experimental study
下载PDF
Some aspects affecting the response of RC compartment structures subjected to internal blast loads
15
作者 Osman M.O.Ramadan M.Galal El Sherbiny Ahmed M.Khalil 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第1期135-148,共14页
Protective compartments are typically used to protect some specific structures from internal explosions,such as industrial buildings that contain devices that may explode in certain circumstances.This research investi... Protective compartments are typically used to protect some specific structures from internal explosions,such as industrial buildings that contain devices that may explode in certain circumstances.This research investigates how the response of reinforced concrete(RC)compartment structures subjected to internal blast loads are affected by the following aspects:introduction of material nonlinearity in the analysis,reinforcement ratio,and aspect ratio of the compartment.To achieve this goal,a calibrated and sophisticated FE numerical model is introduced,and a parametric study for the intended aspects is carried out.A discussion of the results and conclusions are offered,which show the role of each aspect in the dynamic performance of the compartment structures.The main conclusions are as follows:introduction of material nonlinearity in this type of analysis and for these structures is very important and significant in obtaining accurate outputs that are similar to actual behavior;the reinforcement ratio has a significant effect on the response and its effect varies depending on the thickness of the compartment;in general,increasing the reinforcement ratio enhances the behavior and reduces the stresses in the compartment;and the aspect ratio of the compartment does not show a clear pattern on the response of such structures under internal blast loads. 展开更多
关键词 blast loads protective structures nonlinear analysis explicit dynamic analysis
下载PDF
External blast flow field evolution and response mechanism of single-layer reticulated dome structure 被引量:1
16
作者 Shao-bo Qi Guang-yan Huang +1 位作者 Xu-dong Zhi Feng Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期241-253,共13页
Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understandin... Single-layer reticulated dome structure are commonly high-profile building in the public and can be attractive targets for terrorist bombings,so the public can benefit from enhanced safety with a stronger understanding of the behavior of single-layer reticulated dome structure under explosion.This paper investigates the fluid-structure interaction process and the dynamic response performance of the singlelayer reticulated dome under external blast load.Both experimental and numerical results shown that structural deformation is remarkably delayed compared with the velocity of blast wave,which advises the dynamic response of large-span reticulated dome structure has a negligible effect on the blast wave propagation under explosion.Four failure modes are identified by comparing the plastic development of each ring and the residual spatial geometric of the structure,i.e.,minor vibration,local depression,severe damage,and overall collapse.The plastic deformation energy and the displacement potential energy of the structure are the main consumers of the blast energy.In addition,the stress performance of the vertex member and the deep plastic ratio of the whole structure can serve as qualitative indicators to distinguish different failure modes. 展开更多
关键词 External blast loading Reticulated dome structure Fluid-structure interaction Dynamic response mode Response mechanism
下载PDF
Experimental investigation of ultra-early-strength cement-based selfcompacting high strength concrete slabs(URCS)under contact explosions 被引量:1
17
作者 Wei Wang Qing Huo +2 位作者 Jian-chao Yang Jian-hui Wang Xing Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期326-339,共14页
In this paper,UR50 ultra-early-strength cement-based self-compacting high-strength concrete slabs(URCS)have been subjected to contact explosion tests with different TNT charge quality,aiming to evaluate the anti-explo... In this paper,UR50 ultra-early-strength cement-based self-compacting high-strength concrete slabs(URCS)have been subjected to contact explosion tests with different TNT charge quality,aiming to evaluate the anti-explosive performance of URCS.In the experiment,three kinds of ultra-early-strength cement-based reinforced concrete slabs with different reinforcement ratios and a normal concrete slab(NRCS)were used as the control specimen,the curing time of URCS is 28 days and 24 h respectively.The research results show that URCS has a stronger anti-explosion ability than NRCS.The failure mode of URCS under contact explosion is that the front of the reinforced concrete slab explodes into a crater,and the back is spall.With the increase of the charge,the failure mode of the reinforced concrete slab gradually changed to explosive penetration and explosive punching.The experiment results also show that the reinforcement ratio of URCS has little effect on the anti-blast performance,and URCS can reach its anti-blast performance at 28 days after curing for 24 h.On this basis,the damage parameters of URCS for different curing durations were quantified,and an empirical formula for predicting the diameter of the crater and spalling was established. 展开更多
关键词 Ultra-early-strength concrete slabs Blast load Contact blast Blast-resistant performance
下载PDF
Analysis and design for the comprehensive ballistic and blast resistance of polyurea-coated steel plate 被引量:1
18
作者 Dongyang Chu Yigang Wang +3 位作者 Shanglin Yang Zhijie Li Zhuo Zhuang Zhanli Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期35-51,共17页
Fragments and blast waves generated by explosions pose a serious threat to protective structures.In this paper,the impact resistance of polyurea-coated steel plate under complex dynamic loading is analyzed and designe... Fragments and blast waves generated by explosions pose a serious threat to protective structures.In this paper,the impact resistance of polyurea-coated steel plate under complex dynamic loading is analyzed and designed for improving comprehensive ballistic and blast resistance using the newly established computational evaluating model.Firstly,according to the thickness and placement effects of the coating on the impact resistance,the steel-core sandwich plates are designed,which are proved to own outstanding comprehensive ballistic and blast resistance.Besides,the distribution diagram of ballistic and blast resistance for different polyurea-coated steel plates is given to guide the design of protective structures applying in different explosion scenarios.Furthermore,the dynamic response of designed plates under two scenarios with combined fragments and blast loading is studied.The results show that the synergistic effect of the combined loading reduces both the ballistic and blast resistance of the polyurea-coated steel plate.Besides,the acting sequence of the fragments and blast affects the structural protective performance heavily.It is found that the first loading inducing structural large deformation or damage is dominant.When fragments impact first,the excellent unit-thickness ballistic performance of the structural front part is strongly needed for improving the comprehensive ballistic and blast resistance. 展开更多
关键词 POLYUREA Ballistic and blast resistance Combined fragments and blast loading
下载PDF
A simplified approach to modelling blasts in computational fluid dynamics (CFD)
19
作者 D.Mohotti K.Wijesooriya S.Weckert 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期19-34,共16页
This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high e... This paper presents a time-efficient numerical approach to modelling high explosive(HE)blastwave propagation using Computational Fluid Dynamics(CFD).One of the main issues of using conventional CFD modelling in high explosive simulations is the ability to accurately define the initial blastwave properties that arise from the ignition and consequent explosion.Specialised codes often employ Jones-Wilkins-Lee(JWL)or similar equation of state(EOS)to simulate blasts.However,most available CFD codes are limited in terms of EOS modelling.They are restrictive to the Ideal Gas Law(IGL)for compressible flows,which is generally unsuitable for blast simulations.To this end,this paper presents a numerical approach to simulate blastwave propagation for any generic CFD code using the IGL EOS.A new method known as the Input Cavity Method(ICM)is defined where input conditions of the high explosives are given in the form of pressure,velocity and temperature time-history curves.These time history curves are input at a certain distance from the centre of the charge.It is shown that the ICM numerical method can accurately predict over-pressure and impulse time history at measured locations for the incident,reflective and complex multiple reflection scenarios with high numerical accuracy compared to experimental measurements.The ICM is compared to the Pressure Bubble Method(PBM),a common approach to replicating initial conditions for a high explosive in Finite Volume modelling.It is shown that the ICM outperforms the PBM on multiple fronts,such as peak values and overall overpressure curve shape.Finally,the paper also presents the importance of choosing an appropriate solver between the Pressure Based Solver(PBS)and Density-Based Solver(DBS)and provides the advantages and disadvantages of either choice.In general,it is shown that the PBS can resolve and capture the interactions of blastwaves to a higher degree of resolution than the DBS.This is achieved at a much higher computational cost,showing that the DBS is much preferred for quick turnarounds. 展开更多
关键词 Blast loads Computational fluid dynamics Explosions Numerical simulations
下载PDF
近爆作用下钢筋混凝土柱数值分析加载方法对比 被引量:1
20
作者 闫秋实 陈天一 廖维张 《北京工业大学学报》 CAS CSCD 北大核心 2020年第2期154-161,共8页
为了研究近爆作用下不同数值分析加载方法对钢筋混凝土柱动力响应及破坏形式影响,运用AUTODYN对钢筋混凝土柱在近距离爆炸下的超压荷载进行模拟并提出一种荷载简化计算方法.基于LS-DYNA建立近爆作用下钢筋混凝土柱动态响应及其损伤破坏... 为了研究近爆作用下不同数值分析加载方法对钢筋混凝土柱动力响应及破坏形式影响,运用AUTODYN对钢筋混凝土柱在近距离爆炸下的超压荷载进行模拟并提出一种荷载简化计算方法.基于LS-DYNA建立近爆作用下钢筋混凝土柱动态响应及其损伤破坏的三维有限元模型,近爆荷载分别采用简化后的荷载、Load blast命令和“炸药-空气-混凝土柱”流固耦合3种加载方法加载,将模拟结果与爆炸破坏试验结果对比,分析不同加载方法在误差、计算效率、所占内存等方面的特点.研究结果表明,简化荷载加载方式位移误差较小且所占内存较小,但需要掌握2种软件多次建模;blast-load计算模型加载方式建模简单、计算时间较短、所占内存较小、模型稳定但残余位移误差较大;“炸药-空气-混凝土柱”流固耦合加载方式建模较为复杂、计算时间较长、所占内存较大,但误差较小. 展开更多
关键词 近爆 荷载简化 load blast 流固耦合 数值模拟
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部