The key technologies of precision blasting were put forward based on the characteristics of urban via- duct blasting demolition in complicated surroundings. Initial bending instability mechanics model of reinforcing s...The key technologies of precision blasting were put forward based on the characteristics of urban via- duct blasting demolition in complicated surroundings. Initial bending instability mechanics model of reinforcing steel bar frame of blasting fragmented pier and sequenced collapsed dynamic model were established for quanti- tative blasting design. Technologies of water pressure blasting were applied in multi-cell box girder fragmenta- tion. The detonating network of non-electric duplication crossover was adopted for the safety and reliability of ultra-long delay. The rationality of blasting scheme and parameters were validated by physical model test. Harm- ful effects were forecasted and controlled by integrated protective technologies. Specialization, cooperation, pre- cision, execution (SCPE) project management method was put forward for precision management. The key tech- nologies of precision demolition blasting can provide reference for similar proiects.展开更多
Ground vibration accelerations caused by the collapse of blasting demolition of urban viaducts was recorded in ordered to analyze the engineering characteristics and effects on the surrounding buildings. Through the a...Ground vibration accelerations caused by the collapse of blasting demolition of urban viaducts was recorded in ordered to analyze the engineering characteristics and effects on the surrounding buildings. Through the analysis of peak ground acceleration,peak frequency,duration and response spectra of the recorded vibrations in different acceleration arrays,some conclusions are drawn: the peak ground acceleration decreases with increasing distance, and the amplitude of vertical component is higher than that of the horizontal components,especially in near source region. The peak frequency of ground acceleration decreases with distance,and in near source region,it is larger than the natural frequency of the surrounding buildings,and thus it will not have much effect on the buildings. The duration of ground acceleration caused by collapse is longer than that caused by blasting itself. The vertical response spectrum is the largest of the three components,and it decreases rapidly in the near source region of about 30 m,but beyond that the distance decreases slowly.The horizontal components are smaller than the local seismic design spectrum,while the vertical component for natural period under 0.15 s exceeds the seismic design spectrum,but the natural periods of general buildings are usually beyond that domain,so this will not have much effect on the nearby buildings.展开更多
To analyze the characteristics of ground vibration caused by blasting demolition of urban overpass, in this paper we introduced the measurement method and then studied the characteristics of recorded ground vi- bratio...To analyze the characteristics of ground vibration caused by blasting demolition of urban overpass, in this paper we introduced the measurement method and then studied the characteristics of recorded ground vi- brations. Through the analysis of peak acceleration, peak frequency and duration, results indicated that the ver- tical component of vibration is the most important in the region close to the collapse point; the collapse of bridge segments will lead to superposition of ground vibration, and isolation measures can reduce the peak ac- celeration but increase the duration of vibration; blasting and collapse vibration cause no damage to the re- served structure which indicates that blastin~ demolition is a safe and effective method.展开更多
The mechanism of ground vibration in building demolition blasting was investigated,taking into account the prevailing influential factors, including the building's heightof mass center, the quantity size, the stru...The mechanism of ground vibration in building demolition blasting was investigated,taking into account the prevailing influential factors, including the building's heightof mass center, the quantity size, the structural feature, the component material quantity,the demolition method, the geological structure of the region, earthquake resistance rank,as well as the earthquake wave dissemination.The proposed method was applied efficientlyto reduce the blasting effects on the environment, which enriches the control theoriesof vibration caused by collapse in the blasting process and may provide a good referencefor the related engineering practices.展开更多
The desired economics of hard rock surface mining is mainly determined by the parameters of process design which minimize the overall cost per tonne of the rock mined in drilling, blasting, handling and primary crushi...The desired economics of hard rock surface mining is mainly determined by the parameters of process design which minimize the overall cost per tonne of the rock mined in drilling, blasting, handling and primary crushing in given rockmass conditions. The most effective parameters of process design could be established based on the regression models of the cumulative influence of rockmass and mine design parameters on the overall cost per tonne of the rock drilled, blasted, handled and crushed. These models could be developed from the huge data accumulated worldwide on the costs per tonne of hard rock surface mining in drilling, blasting, handling and primary crushing vs the parameters of rockmass and mine design. This paper only dwelt on the development of regression models for oversize generation, blasthole productivity and blasting cost for iron ore surface mines, whose data is available. The SPSS standard statistical correlation – regression analysis software was used in the analysis. Interpretation of the models generated shows that the individual effects of the determinant rockmass and blast design parameters on oversize generation, blasthole productivity and blasting cost are all in compliance with the findings of other researchers and the theory of explosive rock fragmentation and could be used for the estimation of oversize generation, blasthole productivity and blasting cost in rockmass and blast design conditions similar to those of the iron ore surface mines examined in this study. However, the regression models obtained here could not be used alone for the optimization of blast design because most of the determinant parameters also have conflicting effect on the other processes of drilling, handling and primary crushing the blasted rock. Also, the quality and content of the regression models could be enhanced further by increasing the content of rockmass and blast design parameters and the volume of data considered in the regression analysis.展开更多
The applications of numerical simulation in demolition blasting were reviewed.Several methods of numerical simulation in demolition blasting were introduced.The strength and weakness of the numerical methods mentioned...The applications of numerical simulation in demolition blasting were reviewed.Several methods of numerical simulation in demolition blasting were introduced.The strength and weakness of the numerical methods mentioned in this paper were also indicated,respectively.Furthermore,the solid lattice model in the frame of discrete element method(DEM),which was developed by the author and his team,was detailedly described.The existed problems in the current numerical simulation methods of demolition blasting were presented and the future trend of the numerical simulation is finally prospected.展开更多
Based on blasting demolition of high thin-wall hyperbolic reinforced concrete cool tower, by virtue of engineering practice of blasting the tube concrete structures, the analysis and research were made on the mechanis...Based on blasting demolition of high thin-wall hyperbolic reinforced concrete cool tower, by virtue of engineering practice of blasting the tube concrete structures, the analysis and research were made on the mechanism of cool tower collapse through selecting blasting parameters and selecting gap form, gap size and gap angle. The cool tower was twisted, collapsed directionally and broken well according to the design requirements. The expected results and purposes of blasting were obtained with no back blow, total blasted pile approximates to 4 - 5 m, no occurrence of flying stones and no damage to fixed buildings and equipment, the large-sized hyperbolic thin-wall reinforced concrete cool towers are twisted during blasting and it collapses well with good breaking. The test and measurement of blasting vibrating velocity was carried out during blasting and the measuring results are much less than critical values specified by Safety Regulations for Blasting. The study shows that gap form, gap size and gap angle are the key factors to cool tower collapse and will give beneficial references to related theoretical study and field application.展开更多
After a thorough review of some controllable parameters,which included field investigations,cavern dimensions,explosive,rock strength etc.,cut,contour,lifters and stoping holes were introduced for blasting cavern of n...After a thorough review of some controllable parameters,which included field investigations,cavern dimensions,explosive,rock strength etc.,cut,contour,lifters and stoping holes were introduced for blasting cavern of nucleus submarine.These design were conducted using a U.Langefors and B.Kihlstrom theory.展开更多
Reducing the blasting vibration is important for blasting excavation in subway tunnel construction.Taking the 3rd bid section of Line 3 of Qingdao subway project as an example,the distance between tunnel vault and gro...Reducing the blasting vibration is important for blasting excavation in subway tunnel construction.Taking the 3rd bid section of Line 3 of Qingdao subway project as an example,the distance between tunnel vault and ground is 5 ~ 8 m.In order to insure the safety of the upper buildings,technologies of parallel cut with large diameter empty hole,one-time initiation and delay by parts,and multiple shallow holes were adopted in the project.The results showed that the maximum value of vertical vibration was limited in the criterion allowance,and the upper buildings were not damaged.Besides,problems were solved that the number of nonel detonator was difficult to meet the requirements of excavating a large cross-section tunnel by blasting,multiple cross-section could’t be initiated simultaneously,and construction efficiency was low,which ensure the construction safety and schedule.展开更多
One of the most important factors influencing on a tunnel blast efficiency is the proper design of blasting pattern. Among blasting parameters, blasthole diameter and tunnel face area are more significant so that any ...One of the most important factors influencing on a tunnel blast efficiency is the proper design of blasting pattern. Among blasting parameters, blasthole diameter and tunnel face area are more significant so that any change in these parameters could finally affect on specific charge and specific drilling. There are mainly two groups of methods for tunnel blast design categorized based on the parallel cuts and angular cuts. In this research, a software for tunnel blast design was developed to analyze the effect and sensitiveness of blasthole diameter and the tunnel face area on blasting results in different blast design models. Using the software, it is quickly possible to determine specific charge, specific drilling and number of blastholes for each blast design model. The relations between both of blasthole diameters and the tunnel face area with the above parameters in different blast design models were then investigated to yield a set of equations with the highest correlations to compare the methods. The results showed that angular method requires more blasthole numbers than parallel method in similar condition(blasthole diameter and tunnel face area). Moreover, the specific charge values yielded by the two methods are approximately the same and very close together.展开更多
Interlaid rock is an important component in the construction of neighborhood tunnels that supports and reinforces the area between two tunnels.However,the blasting load during excavation can sometimes damage the inter...Interlaid rock is an important component in the construction of neighborhood tunnels that supports and reinforces the area between two tunnels.However,the blasting load during excavation can sometimes damage the interlaid rock and threaten the stability of a tunnel’s structure.This paper presents a case study of the small clearance section of the Liantang highway tunnel project in Shenzhen,China,where the minimum distance between the two tunnels involved is only 0.5 m.To reduce the damage to the interlaid rock caused by blasting loads,we proposed a four-part excavation method with a vibrationcushioning rock layer in the following tunnel of neighborhood tunnels.Numerical simulation was used to model the damage prevention mechanism of the vibration-cushioning rock layer and to better understand the propagation of cracks in the interlaid rock.Furthermore,based on the simulation results,combined microseismic controlled-blasting technology was implemented,using innovative blasting patterns combined with different charge structures and blasting equipment designed according to the varying thickness of the interlaid rock.Finally,this implementation succeeded in protecting interlaid rock during blasting operations.展开更多
The metallurgy industry consumes a considerable amount of coal and fossil fuels,and its carbon dioxide emissions are increasing every year.Replacing coal with renewable,carbon-neutral biomass for metallurgical product...The metallurgy industry consumes a considerable amount of coal and fossil fuels,and its carbon dioxide emissions are increasing every year.Replacing coal with renewable,carbon-neutral biomass for metallurgical production is of great significance in reducing global carbon consumption.This study describes the current state of research in biomass metallurgy in recent years and analyzes the concept and scientific principles of biomass metallurgy.The fundamentals of biomass pretreatment technology and biomass metallurgy technology were discussed,and the industrial application framework of biomass metallurgy was proposed.Furthermore,the economic and social advantages of biomass metallurgy were analyzed to serve as a reference for the advancement of fundamental theory and industrial application of biomass metallurgy.展开更多
The increasing threat of explosions on the battle field and the terrorist action requires the development of more effective blast resistance materials and structures.Curved structure can support the external loads eff...The increasing threat of explosions on the battle field and the terrorist action requires the development of more effective blast resistance materials and structures.Curved structure can support the external loads effectively by virtue of their spatial curvature.In review of the excellent energy absorption property of auxetic structure,employing auxetic structure as core material in curved sandwich shows the potential to improve the protection performance.In this study,a novel cylindrical sandwich panel with double arrow auxetic(DAA) core was designed and the numerical model was built by ABAQUS.Due to the complexity of the structure,systematic parameter study and optimal design are conducted.Two cases of optimal design were considered,case1 focuses on reducing the deflection and mass of the structure,while case2 focuses on reducing the deflection and increasing the energy absorption per unit mass.Parameter study and optimal design were conducted based on Latin Hypercube Sampling(LHD)method,artificial neural networks(ANN) metamodel and the nondominated sorting genetic algorithm(NSGA-Ⅱ).The Pareto front was obtained and the cylindrical DAA structure performed much better than its equal solid panel in both blast resistance and energy absorption capacity.Optimization results can be used as a reference for different applications.展开更多
To solve the uneven burden of same-type holes reducing the blasting efficiency due to the limitation of drilling equipment,we need a double-face program-controlled planning method for hole position parameters used on ...To solve the uneven burden of same-type holes reducing the blasting efficiency due to the limitation of drilling equipment,we need a double-face program-controlled planning method for hole position parameters used on a computer-controlled drilling jumbo.The cross-section splits into even and uneven areas.It also considers the uneven burden at the hole’s entrance and bottom.In the uneven area,various qualifying factors are made to optimize the hole spacing and maximize the burden uniformity,combined with the features of the area edges and gridbased segmentation methods.The hole position coordinates and angles in the even area are derived using recursion and iteration algorithms.As a case,this method presents all holes in a 4.8 m wide and 3.6 m high cross-section.Compared with the design produced by the drawing method,our planning in the uneven area improved the standard deviation of the hole burden by 40%.The improved hole layout facilitates the evolution of precise,efficient,and intelligent blasting in underground mines.展开更多
Cost and safety are important considerations when designing the thickness of a protective reinforced concrete shelter.The blast perforation limit(BPL)is the minimum concrete shelter thickness that resists perforation ...Cost and safety are important considerations when designing the thickness of a protective reinforced concrete shelter.The blast perforation limit(BPL)is the minimum concrete shelter thickness that resists perforation under blast loading.To investigate the influence of the depth of embedment(DOE)and length-to-diameter ratio(L/D)of an explosive charge on the BPL,the results of an explosion test using a slender explosive partially embedded in a reinforced concrete slab were used to validate a refined finite element model.This model was then applied to conduct more than 300 simulations with strictly controlled variables,obtaining the BPLs for various concrete slabs subjected to charge DOEs ranging from0 to∞and L/D values ranging from 0.89 to 6.87.The numerical results were compared with the experimental results from published literature,further verifying the reliability of the simulation.The findings indicate that for the same explosive charge mass and L/D,the greater the DOE,the larger the critical residual thickness(Rc,defined as the difference between the BPL and DOE)up to a certain constant value;for the same explosive charge mass and DOE,the greater the L/D,the smaller the Rc.Thus,corresponding DOE and shape coefficients were introduced to derive a new equation for the BPL,providing a theoretical approach to the design and safety assessment of protective structures.展开更多
In the past, blast-resistant designs for structures were often constructed with massive type structural systems, which relied more on brute strength than on finesse to achieve the required blast resistance. However, s...In the past, blast-resistant designs for structures were often constructed with massive type structural systems, which relied more on brute strength than on finesse to achieve the required blast resistance. However, structures composed of COLD-FORMED steel components, such as sheet metal and metal studs, have shown great promise in providing blast resistance with the added benefits of low cost and ease of construction. Some examples of using such structures to provide containment for package handling facilities (PHF) are described in the paper for situations where blast containment is needed, such as a potential package bomb being discovered during the package vetting process. Results from tests and analytic data are used to illustrate aspects of design peculiar to such types of applications. Designs for specific capacities of PHF are described.展开更多
Blast furnace scheme design is very important, since it directly affects the performance, cost and configuration of the blast furnace. An evaluation approach to furnace scheme design was brought forward based on artif...Blast furnace scheme design is very important, since it directly affects the performance, cost and configuration of the blast furnace. An evaluation approach to furnace scheme design was brought forward based on artificial neural network. Ten independent parameters which determined a scheme design were proposed. The improved threelayer BP network algorithm was used to build the evaluation model in which the 10 independent parameters were taken as input evaluation indexes and the degree to which the scheme design satisfies the requirements of the blast furnace as output. It was trained by the existing samples of the scheme design and the experts' experience, and then tested by the other samples so as to develop the evaluation model. As an example, it is found that a good scheme design of blast furnace can be chosen by using the evaluation model proposed.展开更多
文摘The key technologies of precision blasting were put forward based on the characteristics of urban via- duct blasting demolition in complicated surroundings. Initial bending instability mechanics model of reinforcing steel bar frame of blasting fragmented pier and sequenced collapsed dynamic model were established for quanti- tative blasting design. Technologies of water pressure blasting were applied in multi-cell box girder fragmenta- tion. The detonating network of non-electric duplication crossover was adopted for the safety and reliability of ultra-long delay. The rationality of blasting scheme and parameters were validated by physical model test. Harm- ful effects were forecasted and controlled by integrated protective technologies. Specialization, cooperation, pre- cision, execution (SCPE) project management method was put forward for precision management. The key tech- nologies of precision demolition blasting can provide reference for similar proiects.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51578516 and 51238012)the Basic Research Foundation of Institute of Engineering Mechanics,CEA(Grant No.2011B02)+1 种基金973 Program(Grant No.2011CB013601)the Wuhan Blasting Company
文摘Ground vibration accelerations caused by the collapse of blasting demolition of urban viaducts was recorded in ordered to analyze the engineering characteristics and effects on the surrounding buildings. Through the analysis of peak ground acceleration,peak frequency,duration and response spectra of the recorded vibrations in different acceleration arrays,some conclusions are drawn: the peak ground acceleration decreases with increasing distance, and the amplitude of vertical component is higher than that of the horizontal components,especially in near source region. The peak frequency of ground acceleration decreases with distance,and in near source region,it is larger than the natural frequency of the surrounding buildings,and thus it will not have much effect on the buildings. The duration of ground acceleration caused by collapse is longer than that caused by blasting itself. The vertical response spectrum is the largest of the three components,and it decreases rapidly in the near source region of about 30 m,but beyond that the distance decreases slowly.The horizontal components are smaller than the local seismic design spectrum,while the vertical component for natural period under 0.15 s exceeds the seismic design spectrum,but the natural periods of general buildings are usually beyond that domain,so this will not have much effect on the nearby buildings.
文摘To analyze the characteristics of ground vibration caused by blasting demolition of urban overpass, in this paper we introduced the measurement method and then studied the characteristics of recorded ground vi- brations. Through the analysis of peak acceleration, peak frequency and duration, results indicated that the ver- tical component of vibration is the most important in the region close to the collapse point; the collapse of bridge segments will lead to superposition of ground vibration, and isolation measures can reduce the peak ac- celeration but increase the duration of vibration; blasting and collapse vibration cause no damage to the re- served structure which indicates that blastin~ demolition is a safe and effective method.
文摘The mechanism of ground vibration in building demolition blasting was investigated,taking into account the prevailing influential factors, including the building's heightof mass center, the quantity size, the structural feature, the component material quantity,the demolition method, the geological structure of the region, earthquake resistance rank,as well as the earthquake wave dissemination.The proposed method was applied efficientlyto reduce the blasting effects on the environment, which enriches the control theoriesof vibration caused by collapse in the blasting process and may provide a good referencefor the related engineering practices.
文摘The desired economics of hard rock surface mining is mainly determined by the parameters of process design which minimize the overall cost per tonne of the rock mined in drilling, blasting, handling and primary crushing in given rockmass conditions. The most effective parameters of process design could be established based on the regression models of the cumulative influence of rockmass and mine design parameters on the overall cost per tonne of the rock drilled, blasted, handled and crushed. These models could be developed from the huge data accumulated worldwide on the costs per tonne of hard rock surface mining in drilling, blasting, handling and primary crushing vs the parameters of rockmass and mine design. This paper only dwelt on the development of regression models for oversize generation, blasthole productivity and blasting cost for iron ore surface mines, whose data is available. The SPSS standard statistical correlation – regression analysis software was used in the analysis. Interpretation of the models generated shows that the individual effects of the determinant rockmass and blast design parameters on oversize generation, blasthole productivity and blasting cost are all in compliance with the findings of other researchers and the theory of explosive rock fragmentation and could be used for the estimation of oversize generation, blasthole productivity and blasting cost in rockmass and blast design conditions similar to those of the iron ore surface mines examined in this study. However, the regression models obtained here could not be used alone for the optimization of blast design because most of the determinant parameters also have conflicting effect on the other processes of drilling, handling and primary crushing the blasted rock. Also, the quality and content of the regression models could be enhanced further by increasing the content of rockmass and blast design parameters and the volume of data considered in the regression analysis.
文摘The applications of numerical simulation in demolition blasting were reviewed.Several methods of numerical simulation in demolition blasting were introduced.The strength and weakness of the numerical methods mentioned in this paper were also indicated,respectively.Furthermore,the solid lattice model in the frame of discrete element method(DEM),which was developed by the author and his team,was detailedly described.The existed problems in the current numerical simulation methods of demolition blasting were presented and the future trend of the numerical simulation is finally prospected.
文摘Based on blasting demolition of high thin-wall hyperbolic reinforced concrete cool tower, by virtue of engineering practice of blasting the tube concrete structures, the analysis and research were made on the mechanism of cool tower collapse through selecting blasting parameters and selecting gap form, gap size and gap angle. The cool tower was twisted, collapsed directionally and broken well according to the design requirements. The expected results and purposes of blasting were obtained with no back blow, total blasted pile approximates to 4 - 5 m, no occurrence of flying stones and no damage to fixed buildings and equipment, the large-sized hyperbolic thin-wall reinforced concrete cool towers are twisted during blasting and it collapses well with good breaking. The test and measurement of blasting vibrating velocity was carried out during blasting and the measuring results are much less than critical values specified by Safety Regulations for Blasting. The study shows that gap form, gap size and gap angle are the key factors to cool tower collapse and will give beneficial references to related theoretical study and field application.
文摘After a thorough review of some controllable parameters,which included field investigations,cavern dimensions,explosive,rock strength etc.,cut,contour,lifters and stoping holes were introduced for blasting cavern of nucleus submarine.These design were conducted using a U.Langefors and B.Kihlstrom theory.
文摘Reducing the blasting vibration is important for blasting excavation in subway tunnel construction.Taking the 3rd bid section of Line 3 of Qingdao subway project as an example,the distance between tunnel vault and ground is 5 ~ 8 m.In order to insure the safety of the upper buildings,technologies of parallel cut with large diameter empty hole,one-time initiation and delay by parts,and multiple shallow holes were adopted in the project.The results showed that the maximum value of vertical vibration was limited in the criterion allowance,and the upper buildings were not damaged.Besides,problems were solved that the number of nonel detonator was difficult to meet the requirements of excavating a large cross-section tunnel by blasting,multiple cross-section could’t be initiated simultaneously,and construction efficiency was low,which ensure the construction safety and schedule.
文摘One of the most important factors influencing on a tunnel blast efficiency is the proper design of blasting pattern. Among blasting parameters, blasthole diameter and tunnel face area are more significant so that any change in these parameters could finally affect on specific charge and specific drilling. There are mainly two groups of methods for tunnel blast design categorized based on the parallel cuts and angular cuts. In this research, a software for tunnel blast design was developed to analyze the effect and sensitiveness of blasthole diameter and the tunnel face area on blasting results in different blast design models. Using the software, it is quickly possible to determine specific charge, specific drilling and number of blastholes for each blast design model. The relations between both of blasthole diameters and the tunnel face area with the above parameters in different blast design models were then investigated to yield a set of equations with the highest correlations to compare the methods. The results showed that angular method requires more blasthole numbers than parallel method in similar condition(blasthole diameter and tunnel face area). Moreover, the specific charge values yielded by the two methods are approximately the same and very close together.
基金the National Natural Science Foundation of China(No.51934001).
文摘Interlaid rock is an important component in the construction of neighborhood tunnels that supports and reinforces the area between two tunnels.However,the blasting load during excavation can sometimes damage the interlaid rock and threaten the stability of a tunnel’s structure.This paper presents a case study of the small clearance section of the Liantang highway tunnel project in Shenzhen,China,where the minimum distance between the two tunnels involved is only 0.5 m.To reduce the damage to the interlaid rock caused by blasting loads,we proposed a four-part excavation method with a vibrationcushioning rock layer in the following tunnel of neighborhood tunnels.Numerical simulation was used to model the damage prevention mechanism of the vibration-cushioning rock layer and to better understand the propagation of cracks in the interlaid rock.Furthermore,based on the simulation results,combined microseismic controlled-blasting technology was implemented,using innovative blasting patterns combined with different charge structures and blasting equipment designed according to the varying thickness of the interlaid rock.Finally,this implementation succeeded in protecting interlaid rock during blasting operations.
基金financially supported by the National Natural Science Foundation of China(No.51704216)the State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing(Nos.41620025,41620026,and 41621009)+1 种基金the Interdisciplinary Research Project for Young Teachers of University of ScienceTechnology Beijing(Fundamental Research Funds f or the Central Universities)(No.FRF-IDRY-20-014)。
文摘The metallurgy industry consumes a considerable amount of coal and fossil fuels,and its carbon dioxide emissions are increasing every year.Replacing coal with renewable,carbon-neutral biomass for metallurgical production is of great significance in reducing global carbon consumption.This study describes the current state of research in biomass metallurgy in recent years and analyzes the concept and scientific principles of biomass metallurgy.The fundamentals of biomass pretreatment technology and biomass metallurgy technology were discussed,and the industrial application framework of biomass metallurgy was proposed.Furthermore,the economic and social advantages of biomass metallurgy were analyzed to serve as a reference for the advancement of fundamental theory and industrial application of biomass metallurgy.
文摘The increasing threat of explosions on the battle field and the terrorist action requires the development of more effective blast resistance materials and structures.Curved structure can support the external loads effectively by virtue of their spatial curvature.In review of the excellent energy absorption property of auxetic structure,employing auxetic structure as core material in curved sandwich shows the potential to improve the protection performance.In this study,a novel cylindrical sandwich panel with double arrow auxetic(DAA) core was designed and the numerical model was built by ABAQUS.Due to the complexity of the structure,systematic parameter study and optimal design are conducted.Two cases of optimal design were considered,case1 focuses on reducing the deflection and mass of the structure,while case2 focuses on reducing the deflection and increasing the energy absorption per unit mass.Parameter study and optimal design were conducted based on Latin Hypercube Sampling(LHD)method,artificial neural networks(ANN) metamodel and the nondominated sorting genetic algorithm(NSGA-Ⅱ).The Pareto front was obtained and the cylindrical DAA structure performed much better than its equal solid panel in both blast resistance and energy absorption capacity.Optimization results can be used as a reference for different applications.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.FRF-AT-19-005)the National Natural Science Foundation of China(No.51934001).
文摘To solve the uneven burden of same-type holes reducing the blasting efficiency due to the limitation of drilling equipment,we need a double-face program-controlled planning method for hole position parameters used on a computer-controlled drilling jumbo.The cross-section splits into even and uneven areas.It also considers the uneven burden at the hole’s entrance and bottom.In the uneven area,various qualifying factors are made to optimize the hole spacing and maximize the burden uniformity,combined with the features of the area edges and gridbased segmentation methods.The hole position coordinates and angles in the even area are derived using recursion and iteration algorithms.As a case,this method presents all holes in a 4.8 m wide and 3.6 m high cross-section.Compared with the design produced by the drawing method,our planning in the uneven area improved the standard deviation of the hole burden by 40%.The improved hole layout facilitates the evolution of precise,efficient,and intelligent blasting in underground mines.
基金supported by the National Natural Science Foundation of China(Grant No.51978166)。
文摘Cost and safety are important considerations when designing the thickness of a protective reinforced concrete shelter.The blast perforation limit(BPL)is the minimum concrete shelter thickness that resists perforation under blast loading.To investigate the influence of the depth of embedment(DOE)and length-to-diameter ratio(L/D)of an explosive charge on the BPL,the results of an explosion test using a slender explosive partially embedded in a reinforced concrete slab were used to validate a refined finite element model.This model was then applied to conduct more than 300 simulations with strictly controlled variables,obtaining the BPLs for various concrete slabs subjected to charge DOEs ranging from0 to∞and L/D values ranging from 0.89 to 6.87.The numerical results were compared with the experimental results from published literature,further verifying the reliability of the simulation.The findings indicate that for the same explosive charge mass and L/D,the greater the DOE,the larger the critical residual thickness(Rc,defined as the difference between the BPL and DOE)up to a certain constant value;for the same explosive charge mass and DOE,the greater the L/D,the smaller the Rc.Thus,corresponding DOE and shape coefficients were introduced to derive a new equation for the BPL,providing a theoretical approach to the design and safety assessment of protective structures.
文摘In the past, blast-resistant designs for structures were often constructed with massive type structural systems, which relied more on brute strength than on finesse to achieve the required blast resistance. However, structures composed of COLD-FORMED steel components, such as sheet metal and metal studs, have shown great promise in providing blast resistance with the added benefits of low cost and ease of construction. Some examples of using such structures to provide containment for package handling facilities (PHF) are described in the paper for situations where blast containment is needed, such as a potential package bomb being discovered during the package vetting process. Results from tests and analytic data are used to illustrate aspects of design peculiar to such types of applications. Designs for specific capacities of PHF are described.
基金Provincial Natural Science Foundation of Sichuan Province of China (04JY029-003-2)
文摘Blast furnace scheme design is very important, since it directly affects the performance, cost and configuration of the blast furnace. An evaluation approach to furnace scheme design was brought forward based on artificial neural network. Ten independent parameters which determined a scheme design were proposed. The improved threelayer BP network algorithm was used to build the evaluation model in which the 10 independent parameters were taken as input evaluation indexes and the degree to which the scheme design satisfies the requirements of the blast furnace as output. It was trained by the existing samples of the scheme design and the experts' experience, and then tested by the other samples so as to develop the evaluation model. As an example, it is found that a good scheme design of blast furnace can be chosen by using the evaluation model proposed.