Despite hybrid dominance contributing to the genetic improvement of crops,little is known about heterosis and inheritance patterns of endogenous substances in sorghum(Sorghum bicolor(L.)Moench)root bleeding sap.In thi...Despite hybrid dominance contributing to the genetic improvement of crops,little is known about heterosis and inheritance patterns of endogenous substances in sorghum(Sorghum bicolor(L.)Moench)root bleeding sap.In this study,six sterile and six restorer lines of sorghum and 36 hybrid sorghum combinations formulated as incomplete double-row crosses were selected as test materials,and heterosis,combining ability,heritability,and their interrelationships of root bleeding sap endogenous substances in different hybrid sorghum combinations and their parents were investigated.The results showed that the root bleeding sap of the F1 generation of hybrid sorghum had a high heterosis in both soluble sugar content and amino acid content at the flowering stage,and the average high-parent heterosis was 129.34%and 74.57%,respectively.Indole-3-acetic acid(IAA),cytokinins(CTK),gibberellic acid(GA_(3)),abscisic acid(ABA),soluble sugar,amino acid,and root bleeding intensity were mainly affected by non-additive genetic effects of the genes.Soluble protein was affected by additive genetic effects of the genes and had a high narrow heritability(75.50%),which could be selected at low generations in breeding.The combining ability analyses showed that the sterile lines 521A and 170A,and the restorer lines Ji318R and 0–30 were promising parents with high general combining ability.Correlation analysis showed that all endogenous substances of root bleeding sap were positively correlated with the sum of parental general combining ability(GCA)at highly significant levels,and IAA,CTK,GA_(3),ABA,soluble sugar,amino acid,and root bleeding intensity were positively correlated with male GCA at significant or highly significant levels.Therefore,the GCA of the restorer lines root bleeding sap endogenous material or the sum of both parents’GCA can be used to predict the performance of wounding endogenous material in the F1 generation of hybrid sorghum.Overall,this study results can help elucidate heterosis mechanisms of root bleeding sap endogenous material and improve sorghum quality.展开更多
Knowledge of the interactive effects of water and nitrogen(N)on physio-chemical traits of maize(Zea mays L.)helps to optimize water and N management and improve productivity.A split-plot experiment was conducted with ...Knowledge of the interactive effects of water and nitrogen(N)on physio-chemical traits of maize(Zea mays L.)helps to optimize water and N management and improve productivity.A split-plot experiment was conducted with three soil water conditions(severe drought,moderate drought,and fully water supply referring to 45%-55%,65%-75%,and 85%-95%field capacity,respectively)and four N application rates(N0,N150,N240,and N330 referring to 0,150,240,330 kg N ha^(-1)respectively)under drip fertigation in 2014 and 2015 in the Huang-Huai-Hai Plain of China.The results indicated that drought stress inhibited physiological activity of plants(leaf relative water content,root bleeding sap,and net photosynthetic rate),resulting in low dry matter accumulation after silking,yield,and N uptake,whereas increased WUE and NUE.N application rates over than 150 kg ha^(-1)aggravated the inhibition of physiological activity under severe drought condition,while it was offset under moderate drought condition.High N application rates(N330)still revealed negative effects under moderate drought condition,as it did not consistently enhance plant physiological activity and significantly reduced N uptake as compared to the N240 treatment.With fully water supply,increasing N application rates synergistically enhanced physiological activity,promoted dry matter accumulation after silking,and increased yield,WUE,and N uptake.Although the N240 treatment reduced yield by 5.4%in average,it saved 27.3%N under full water supply condition as compared with N330 treatment.The results indicated that N regulated growth of maize in aspects of physiological traits,dry matter accumulation,and yield as well as water and N use was depended on soil water status.The appropriate N application rates for maize production was 150 kg ha^(-1)under moderate drought or 240 kg ha^(-1)under fully water supply under drip fertigation,and high N supply(>150 kg ha^(-1))should be avoided under severe drought condition.展开更多
基金funded by the Jilin Province Science and Technology Development Plan Project(20210202001NC)of Ziyang Zhouthe Jilin Agricultural Science and Technology Innovation Project(CXGC2021TD011)of Ziyang Zhou。
文摘Despite hybrid dominance contributing to the genetic improvement of crops,little is known about heterosis and inheritance patterns of endogenous substances in sorghum(Sorghum bicolor(L.)Moench)root bleeding sap.In this study,six sterile and six restorer lines of sorghum and 36 hybrid sorghum combinations formulated as incomplete double-row crosses were selected as test materials,and heterosis,combining ability,heritability,and their interrelationships of root bleeding sap endogenous substances in different hybrid sorghum combinations and their parents were investigated.The results showed that the root bleeding sap of the F1 generation of hybrid sorghum had a high heterosis in both soluble sugar content and amino acid content at the flowering stage,and the average high-parent heterosis was 129.34%and 74.57%,respectively.Indole-3-acetic acid(IAA),cytokinins(CTK),gibberellic acid(GA_(3)),abscisic acid(ABA),soluble sugar,amino acid,and root bleeding intensity were mainly affected by non-additive genetic effects of the genes.Soluble protein was affected by additive genetic effects of the genes and had a high narrow heritability(75.50%),which could be selected at low generations in breeding.The combining ability analyses showed that the sterile lines 521A and 170A,and the restorer lines Ji318R and 0–30 were promising parents with high general combining ability.Correlation analysis showed that all endogenous substances of root bleeding sap were positively correlated with the sum of parental general combining ability(GCA)at highly significant levels,and IAA,CTK,GA_(3),ABA,soluble sugar,amino acid,and root bleeding intensity were positively correlated with male GCA at significant or highly significant levels.Therefore,the GCA of the restorer lines root bleeding sap endogenous material or the sum of both parents’GCA can be used to predict the performance of wounding endogenous material in the F1 generation of hybrid sorghum.Overall,this study results can help elucidate heterosis mechanisms of root bleeding sap endogenous material and improve sorghum quality.
基金This research was supported by the National Key Research and Development Program of China(No.2017YFD0301106)the National Natural Science Foundation of China(Nos.31871553 and 31601258).
文摘Knowledge of the interactive effects of water and nitrogen(N)on physio-chemical traits of maize(Zea mays L.)helps to optimize water and N management and improve productivity.A split-plot experiment was conducted with three soil water conditions(severe drought,moderate drought,and fully water supply referring to 45%-55%,65%-75%,and 85%-95%field capacity,respectively)and four N application rates(N0,N150,N240,and N330 referring to 0,150,240,330 kg N ha^(-1)respectively)under drip fertigation in 2014 and 2015 in the Huang-Huai-Hai Plain of China.The results indicated that drought stress inhibited physiological activity of plants(leaf relative water content,root bleeding sap,and net photosynthetic rate),resulting in low dry matter accumulation after silking,yield,and N uptake,whereas increased WUE and NUE.N application rates over than 150 kg ha^(-1)aggravated the inhibition of physiological activity under severe drought condition,while it was offset under moderate drought condition.High N application rates(N330)still revealed negative effects under moderate drought condition,as it did not consistently enhance plant physiological activity and significantly reduced N uptake as compared to the N240 treatment.With fully water supply,increasing N application rates synergistically enhanced physiological activity,promoted dry matter accumulation after silking,and increased yield,WUE,and N uptake.Although the N240 treatment reduced yield by 5.4%in average,it saved 27.3%N under full water supply condition as compared with N330 treatment.The results indicated that N regulated growth of maize in aspects of physiological traits,dry matter accumulation,and yield as well as water and N use was depended on soil water status.The appropriate N application rates for maize production was 150 kg ha^(-1)under moderate drought or 240 kg ha^(-1)under fully water supply under drip fertigation,and high N supply(>150 kg ha^(-1))should be avoided under severe drought condition.