This work aimed to fabricate B4C reinforced aluminum matrix composites via blended powder semisolid forming that is an implementation of the benefits of semisolid forming to the powder metallurgy. Al7075 elements were...This work aimed to fabricate B4C reinforced aluminum matrix composites via blended powder semisolid forming that is an implementation of the benefits of semisolid forming to the powder metallurgy. Al7075 elements were incrementally added to ethanol solution under mechanical mixing. Al7075 constituents and B4C particles were blended in a high energy ball mill. Cold compacted Al7075/B4C blends were pressed at semisolid state. The effects of the size of the matrix(20, 45 and 63 μm), reinforcing volume fraction(5%, 10% and 20%) and semisolid compaction pressure(50 and 100 MPa) on the morphology, microstructure, density, hardness, compression and bending strength were thoroughly analyzed. Experimental results revealed that the highest microstructural uniformity was achieved when large B4C particles(45 μm) were distributed within the small particles(20 μm) of the matrix phase. Composites with matrix particles larger than reinforcing phase indicated agglomerations in loadings more than 10%(volume fraction). Agglomerated regions resisted against penetration of the liquid phase to the pores and lowered the density and strength of these composites. Composites with 20 μm Al7075 and 20%(volume fraction) 45 μm B4C powder pressed under 100 MPa exhibited the highest values of hardness(HV 190) and compressive strength(336 MPa).展开更多
The reaction diffusion between Fe and Al during spark plasma sintering(SPS)was studied.Microstructural evolution wasinvestigated by X-ray diffraction(XRD)and scanning electron microscopy(SEM)and the sintering kinetics...The reaction diffusion between Fe and Al during spark plasma sintering(SPS)was studied.Microstructural evolution wasinvestigated by X-ray diffraction(XRD)and scanning electron microscopy(SEM)and the sintering kinetics was disclosed.The maininterphase of the SPS sample was Fe2Al5at773-873K.Ball-milling enabled a large number of lattice defects and grain boundariesthus the reaction kinetics was accelerated,although the direct current can also promote those defects.After milling,the phasetransformation kinetics was improved from0.207before mill to4.56×10-3.Besides,this work provided more details for thegeneration of Joule heating.The resistance offered to the electric path was considered to be the source of Joule heating,andparticularly the resistance offered by the different contact interfaces of die,punch,graphite foil and the sample played a leading rolefor the generation of Joule heating during spark plasma sintering.展开更多
Homogeneity of powder blend is essential to obtain uniform contents for the tablets and capsules.Near-infrared(NIR)spectroscopy with fiber-optic probe was used as an on-line technique for monitoring the homogeneity of...Homogeneity of powder blend is essential to obtain uniform contents for the tablets and capsules.Near-infrared(NIR)spectroscopy with fiber-optic probe was used as an on-line technique for monitoring the homogeneity of pharmaceutical blend during the blending process instead of the traditional techniques,such as high performance liquid chromatograph(HPLC)method.In this paper NIRS with a SabIR difuse reflectance fiber optic probe was used to monitor the blending process of coptis powder and lactose(excipient)with different contents,and further qualitative methods,like similarity,moving block of standard deviation and mean square were used for calculation purposes with the ollected spectra after the pretreatment of multiplicative signal correction(MSC)and second derivative.Correlation spectrum was used for the wavelength selection.Four different coptis were blended with lactose separately to validate the proposed method,and the blending process of "liu wei di huang"pill was also simulated in bottles to verify this method on multiple herbal blends.The overall results suggest that NIRS is a simple,efective and noninvasive technique can be sucssfuly applied to the determination of homogeneity in the herbal blend.展开更多
Morphology evolution of prior β grains of laser solid forming (LSF) Ti-xAl-yV (x 11,y 20) alloys from blended elemental powders is investigated. The formation mechanism of grain morphology is revealed by incorpor...Morphology evolution of prior β grains of laser solid forming (LSF) Ti-xAl-yV (x 11,y 20) alloys from blended elemental powders is investigated. The formation mechanism of grain morphology is revealed by incorporating columnar to equiaxed transition (CET) mechanism during solidification. The morphology of prior β grains of LSF Ti-6Al-yV changes from columnar to equiaxed grains with increasing element V content from 4 to 20 wt.-%. This agrees well with CET theoretical prediction. Likewise, the grain morphology of LSF Ti-xAl-2V from blended elemental powders changes from large columnar to small equiaxed with increasing Al content from 2 to 11 wt.-%. The macro-morphologies of LSF Ti-8Al-2V and Ti-11Al-2V from blended elemental powders do not agree with CET predictions. This is caused by the increased disturbance effects of mixing enthalpy with increasing Al content, generated in the alloying process of Ti, Al, and V in the molten pool.展开更多
基金Tabriz Branch,Islamic Azad University for the financial support of this research,which is based on a research project contract
文摘This work aimed to fabricate B4C reinforced aluminum matrix composites via blended powder semisolid forming that is an implementation of the benefits of semisolid forming to the powder metallurgy. Al7075 elements were incrementally added to ethanol solution under mechanical mixing. Al7075 constituents and B4C particles were blended in a high energy ball mill. Cold compacted Al7075/B4C blends were pressed at semisolid state. The effects of the size of the matrix(20, 45 and 63 μm), reinforcing volume fraction(5%, 10% and 20%) and semisolid compaction pressure(50 and 100 MPa) on the morphology, microstructure, density, hardness, compression and bending strength were thoroughly analyzed. Experimental results revealed that the highest microstructural uniformity was achieved when large B4C particles(45 μm) were distributed within the small particles(20 μm) of the matrix phase. Composites with matrix particles larger than reinforcing phase indicated agglomerations in loadings more than 10%(volume fraction). Agglomerated regions resisted against penetration of the liquid phase to the pores and lowered the density and strength of these composites. Composites with 20 μm Al7075 and 20%(volume fraction) 45 μm B4C powder pressed under 100 MPa exhibited the highest values of hardness(HV 190) and compressive strength(336 MPa).
基金Projects(51474245,51571214)supported by the National Natural Science Foundation of ChinaProjects(2015GK3004,2015JC3006)supported by the Science and Technology Project of Hunan Province,China+3 种基金Project(2016YFB1100101)supported by the National Key Research and Development Program,ChinaProject(K1502003-11)supported by the Changsha Municipal Major Science and Technology Program,ChinaProject(CSUZC2015030)supported by the Open-End Fund for the Valuable and Precision Instruments of CSU,ChinaProjects(2015CX004,2016CX003)supported by the Project of Innovation-driven Plan in CSU,China
文摘The reaction diffusion between Fe and Al during spark plasma sintering(SPS)was studied.Microstructural evolution wasinvestigated by X-ray diffraction(XRD)and scanning electron microscopy(SEM)and the sintering kinetics was disclosed.The maininterphase of the SPS sample was Fe2Al5at773-873K.Ball-milling enabled a large number of lattice defects and grain boundariesthus the reaction kinetics was accelerated,although the direct current can also promote those defects.After milling,the phasetransformation kinetics was improved from0.207before mill to4.56×10-3.Besides,this work provided more details for thegeneration of Joule heating.The resistance offered to the electric path was considered to be the source of Joule heating,andparticularly the resistance offered by the different contact interfaces of die,punch,graphite foil and the sample played a leading rolefor the generation of Joule heating during spark plasma sintering.
基金support from China Postdoctoral Science Foundation Special Funded Project (2013T60604)Zhejiang Provincial Public Welfare Application Project of China (2012C21102)is gratefully acknowledged.
文摘Homogeneity of powder blend is essential to obtain uniform contents for the tablets and capsules.Near-infrared(NIR)spectroscopy with fiber-optic probe was used as an on-line technique for monitoring the homogeneity of pharmaceutical blend during the blending process instead of the traditional techniques,such as high performance liquid chromatograph(HPLC)method.In this paper NIRS with a SabIR difuse reflectance fiber optic probe was used to monitor the blending process of coptis powder and lactose(excipient)with different contents,and further qualitative methods,like similarity,moving block of standard deviation and mean square were used for calculation purposes with the ollected spectra after the pretreatment of multiplicative signal correction(MSC)and second derivative.Correlation spectrum was used for the wavelength selection.Four different coptis were blended with lactose separately to validate the proposed method,and the blending process of "liu wei di huang"pill was also simulated in bottles to verify this method on multiple herbal blends.The overall results suggest that NIRS is a simple,efective and noninvasive technique can be sucssfuly applied to the determination of homogeneity in the herbal blend.
基金supported by the State Key Laboratory of Solidification Processing in NWPU (Nos.SKLSP201102 and 06-BZ-2010)Lthe China Postdoc-toral Science Foundation (No.20100470040)the National Natural Science Foundation of China (No.50871089)
文摘Morphology evolution of prior β grains of laser solid forming (LSF) Ti-xAl-yV (x 11,y 20) alloys from blended elemental powders is investigated. The formation mechanism of grain morphology is revealed by incorporating columnar to equiaxed transition (CET) mechanism during solidification. The morphology of prior β grains of LSF Ti-6Al-yV changes from columnar to equiaxed grains with increasing element V content from 4 to 20 wt.-%. This agrees well with CET theoretical prediction. Likewise, the grain morphology of LSF Ti-xAl-2V from blended elemental powders changes from large columnar to small equiaxed with increasing Al content from 2 to 11 wt.-%. The macro-morphologies of LSF Ti-8Al-2V and Ti-11Al-2V from blended elemental powders do not agree with CET predictions. This is caused by the increased disturbance effects of mixing enthalpy with increasing Al content, generated in the alloying process of Ti, Al, and V in the molten pool.