A series of fluorescent composites were prepared by blending silicone rubber with Eu(TTA )2(phen)(MA). The influence of mechanical blending temperature on fluorescent intensity of composites and dispersion of rare ear...A series of fluorescent composites were prepared by blending silicone rubber with Eu(TTA )2(phen)(MA). The influence of mechanical blending temperature on fluorescent intensity of composites and dispersion of rare earth complexes in the SiR matrix were investigated. As for the cured rubber, it is found that its fluorescent intensity is relatively low compared with that of uncured rubber. Low temperature is beneficial to dispersion of Eu(TTA )2(phen)(MA) homogeneously. When the amount of rare earth complexes is low, the fluorescent intensity of composites prepared by mechanical blending method above melting point of Eu(TTA )2(phen)(MA) is much higher than that of composites prepared below melting point.展开更多
基金Project supported by the National Natural Science Foundation of China and the China Energy Conservation Investment Corporation (50173004 and 50503002)the Beijing New Star Project (2003A11)+1 种基金the National High-Tech Research Developing Foundation ("863", 2003AA324030) Beijing Municipal Commission of Education (JD100100403)
文摘A series of fluorescent composites were prepared by blending silicone rubber with Eu(TTA )2(phen)(MA). The influence of mechanical blending temperature on fluorescent intensity of composites and dispersion of rare earth complexes in the SiR matrix were investigated. As for the cured rubber, it is found that its fluorescent intensity is relatively low compared with that of uncured rubber. Low temperature is beneficial to dispersion of Eu(TTA )2(phen)(MA) homogeneously. When the amount of rare earth complexes is low, the fluorescent intensity of composites prepared by mechanical blending method above melting point of Eu(TTA )2(phen)(MA) is much higher than that of composites prepared below melting point.