期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Preparation and Characterization of DGEBA/EPN Epoxy Blends with Improved Fracture Toughness 被引量:1
1
作者 Morteza Khalina Mohammad Hosain Beheshty Ali Salimi 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第5期632-640,共9页
The physical and mechanical properties of blends composed of two kinds of epoxy resins of different numbers of functional groups and chemical structure were studied. One of the resins was a bifunctional epoxy resin ba... The physical and mechanical properties of blends composed of two kinds of epoxy resins of different numbers of functional groups and chemical structure were studied. One of the resins was a bifunctional epoxy resin based on diglycidyl ether of bisphenol A and the other resin was a multifunctional epoxy novolac resin. Attempt was made to establish a correlation between the structure and the final properties of cured epoxy samples. The blend samples containing high fraction of multifunctional epoxy resin showed higher solvent resistance and lower flexural modulus compared with the blends containing high fraction of bifunctional epoxy resin. The epoxy blends showed significantly higher ductility under bending test than the neat epoxy samples. The compressive modulus and strength increased with increasing of multifunctional epoxy in the samples, probably due to enhanced cross-link density and molecular weight. Morphological analysis revealed the presence of inhomogeneous sub-micrometer structures in all samples. The epoxy blends exhibited significantly higher fracture toughness(by 23% at most) compared with the neat samples. The improvement of the fracture toughness was attributed to the stick-slip mechanism for crack growth and activation of shear yielding and plastic deformation around the crack growth trajectories for samples with higher content of bifunctional epoxy resin as evidenced by fractography study. 展开更多
关键词 Epoxy Blend Functionality Mechanical property toughness
原文传递
Synergistic Efficiency of Tricresyl Phosphate and Montmorillonite on the Mechanical Characteristics and Flame Retardant Properties of Polylactide and Poly(butylene succinate) Blends 被引量:4
2
作者 Tunsuda Suparanon Jiratchaya Surisaeng +1 位作者 Neeranuch Phusunti Worasak Phetwarotai 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第5期620-631,共12页
The main aim of this research was to investigate the synergistic influence of additives and poly(butylene succinate)(PBS) in improving both the mechanical and flame retardant properties of polylactide(PLA) blend... The main aim of this research was to investigate the synergistic influence of additives and poly(butylene succinate)(PBS) in improving both the mechanical and flame retardant properties of polylactide(PLA) blends. Tricresyl phosphate(TCP) and montmorillonite(MMT) were the additives used to improve the mechanical characteristics and fire resistance of PLA. Differential scanning calorimetry(DSC) thermograms revealed that the addition of TCP and MMT significantly affected their thermal behaviors. The results of the mechanical and morphological characterizations were in agreement with the changes in thermal behavior. The impact strength and limiting oxygen index(LOI) value of PLA significantly increased with the presence of PBS. The failure mode of the blends as evidenced by scanning electron microscopy(SEM) changed from brittle to ductile. The addition of TCP and MMT produced excellent anti-dripping and self-extinguishing behaviors of the blends, achieving V-0 rating. For the PLA/PBS blends, the synergistic combination of PBS and additives led to an acceleration of cold crystallization, a significant increment of flexibility and impact toughness, and an improvement of flame retardancy. 展开更多
关键词 Polylactide Poly(butylene succinate) Blend Flame retardant Impact toughness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部