In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because t...In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because the transmission equation of OFDM systems does not exactly have the desired structure to directly derive a subspace algorithm,the algorithm first divides the OFDM signals into three parts,then,by exploiting the redundancy introduced by the cyclic prefix (CP) in OFDM signals,a new equation with Toeplitz channel matrix is derived.Based on the equation,a new blind subspace algorithm is developed.Toeplitz structure eases the derivation of the subspace algorithm and practical computation.Moreover the algorithm does not change the existing OFDM system,is robust to channel order overdetermination,and the channel zero locations.The performances are demonstrated by simulation results.展开更多
To remove the scalar ambiguity in conventional blind channel estimation algorithms, totally blind channel estimation (TBCE) is proposed by using multiple constellations. To estimate the unknown scalar, its phase is ...To remove the scalar ambiguity in conventional blind channel estimation algorithms, totally blind channel estimation (TBCE) is proposed by using multiple constellations. To estimate the unknown scalar, its phase is decomposed into a fractional phase and an integer phase. However, the maximum-likelihood (ML) algorithm for the fractional phase does not have closed-form solutions and suffers from high computational complexity. By ex- ploring the structures of widely used constellations, this paper proposes a low-complexity fractional phase estimation algorithm which requires no exhaustive search. Analytical expressions of the asymptotic mean squared error (MSE) are also derived. The theo- retical analysis and simulation results indicate that the proposed fractional phase estimation algorithm exhibits almost the same performance as the ML algorithm but with significantly reduced computational burden.展开更多
Compared with the traditional channel estimation methods, blind channel estimation methods can increase the bandwidth efficiency of the systems, but their precision is low and they converge slowly. In this paper, the ...Compared with the traditional channel estimation methods, blind channel estimation methods can increase the bandwidth efficiency of the systems, but their precision is low and they converge slowly. In this paper, the Cramér-Rao Bound (CRB) for blind channel estimation in complex-valued Single-Input Multiple- Output (SIMO) channel is derived. In the simulations, the correctness of the CRB is validated and some channel estimation methods are evaluated by using the CRB.展开更多
To reduce channel noise,fading,and inter-user interference effectively in the chaotic communication systems with multi-user,a blind channel equalization algorithm based on dual unscented Kalman filter algorithm is pro...To reduce channel noise,fading,and inter-user interference effectively in the chaotic communication systems with multi-user,a blind channel equalization algorithm based on dual unscented Kalman filter algorithm is proposed.Assuming that the coefficients of a multi-input multi-output (MIMO) channel can be described by an autoregressive model,two separate state-space representations are used for the signals and coefficients.Then two unscented Kalman filters are used to estimate chaotic signals and channel coefficients simultaneously.The simulation results indicate that the algorithm can effectively track the coefficients of the multi-path fading channel in chaotic MIMO communication systems at a fast convergence speed.展开更多
Considering that channel estimation can play a crucial role in coherent detection of the information symbols in each data block, a blind channel estimation approach is proposed for redundant precoded orthogonal freque...Considering that channel estimation can play a crucial role in coherent detection of the information symbols in each data block, a blind channel estimation approach is proposed for redundant precoded orthogonal frequency-division multiplexing (OFDM) systems. A redundant linear frequency-domain precoder is applied to each pair of blocks before they enter the OFDM system. Because of the introduced structure, the frequency-selective channel can be identified at the receiver based on autocorrelation operations, singular value decomposition (SVD), and by resolving the scalar ambiguity. The proposed channel estimation method has low computational complexity and requires no prior statistical information on channel or noise. And the proposed blind method has high spectral efficiency owing to exploiting no training sequence. Computer simulations confirm that this proposed blind channel estimation method can identify the frequency-selective channels perfectly and obtain a good performance.展开更多
A subspace-based blind channel estination algo rithm for MIMO-OFDM systems is proposed. This algorithm exploits the cyclostationarity introduced by cyclic prefix of OFDM to estimate the channel parameters. The propose...A subspace-based blind channel estination algo rithm for MIMO-OFDM systems is proposed. This algorithm exploits the cyclostationarity introduced by cyclic prefix of OFDM to estimate the channel parameters. The proposed new algorithm is found to be outperforming the other algorithm with respect to convergence rate and achievable mean square error and robustness to channel order over determination.展开更多
Delay diversity is an effective transmit diversity technique to combat adverse effects of fading. Thus far, previous work in delay diversity assumed that perfect estimates of current channel fading conditions are ava...Delay diversity is an effective transmit diversity technique to combat adverse effects of fading. Thus far, previous work in delay diversity assumed that perfect estimates of current channel fading conditions are available at the receiver and training symbols are required to estimate the channel from the transmitter to the receiver. However, increasing the number of the antennas increases the required training interval and reduces the available time with in whichdata may be transmitted. Learning the channel coefficients becomes increasingly difficult for the frequency selective channels. In this paper, with the subspace method and the delay character of delay diversity, a channel estimation method is proposed, which does not use training symbols. It addresses the transmit diversity for a frequency selective channel from a single carrier perspective in the form of a simple equivalent flat fading model. Monte Carlo simulations give the performance of channel estimation and the performance comparison of our channel-estimation-based detector with decision feedback equalization, which uses the perfect channel information.展开更多
A novel approach of blind channel estimation through redundant linear precoding for orthogonal fre-quency-division multiplexing (OFDM) is proposed. A redundant linear frequency-domain preceder is ap-plied to each pa...A novel approach of blind channel estimation through redundant linear precoding for orthogonal fre-quency-division multiplexing (OFDM) is proposed. A redundant linear frequency-domain preceder is ap-plied to each pair of blocks before they enter the OFDM system. With the aid of the introduced structure, the frequency-selective channel can be identified at the receiver through auto-correlation operations, sin-gular value decomposition (SVD) and scalar ambiguity resolution. The proposed blind channel estimation method has low computation complexity and requires no prior statistical information of channel or noise. The redundant linear frequency-domain precoder is employed to identify the frequency-selective fading channels. And the proposed blind channel estimation method has high spectral efficiency because it re-quires no training sequence. Computer simulations have proved that this proposed blind channel estima- tion method can identify the frequency-selective channels perfectly and have a good performance.展开更多
The decoupled coherent Maximum Likelihood (ML) detection algorithm presented in this letter can sharply reduce the complexity of the receiver as well as provide better error performance under the precondition that cha...The decoupled coherent Maximum Likelihood (ML) detection algorithm presented in this letter can sharply reduce the complexity of the receiver as well as provide better error performance under the precondition that channel should be estimated first. Considering the bandwidth inefficiency of Frequency Shift Keying (FSK), the acquisition of channel state information through training sequences will further decrease the transmission efficiency. This letter presents a blind channel estimation algorithm based on noise subspace theory which can acquire channel information without any training symbols. The simulation shows that the algorithm brings about fewer channel estimation errors while the frequency efficiency can be increased.展开更多
A semi-blind channel estimation algorithm based on subspace approach for orthogonal frequency division multiplexing(OFDM) systems over the frequency-selective channel is proposed. A linear preeoding is applied on ea...A semi-blind channel estimation algorithm based on subspace approach for orthogonal frequency division multiplexing(OFDM) systems over the frequency-selective channel is proposed. A linear preeoding is applied on each block before the IFFT operation and a low-rank structure is created in the received signal. Then subspace properties can be exploited to identify the channel up to a scalar ambiguity. The residual scalar ambiguities eliminated by inserting pilots into data stream. Simulation results illustrate the performance of the proposed semi-blind algorithm.展开更多
An adaptive bit loading and power-allocation scheme is proposed in order to augment the performance of the system based on orthogonal frequency division multiplexing (OFDM), which is based on the maximum power margi...An adaptive bit loading and power-allocation scheme is proposed in order to augment the performance of the system based on orthogonal frequency division multiplexing (OFDM), which is based on the maximum power margin. Coinciding with the adaptive loading scheme, a semi-blind channel estimation algorithm using subspace decomposition method is proposed, which uses the information in the cyclic prefix. An initial channel state information is estimated by using the training sequences with the method of interpolation filtering. The proposed adaptive scheme is simulated on an OFDM wireless local area network(WLAN) system in a time-varying channel. The performance is compared to the constant loading scheme.展开更多
Signals from multi-sensor systems are often mixtures of (statistically) independent sources by unknown mixing method. Blind source separation(BSS) and independent component analysis(ICA) are the methods to ident...Signals from multi-sensor systems are often mixtures of (statistically) independent sources by unknown mixing method. Blind source separation(BSS) and independent component analysis(ICA) are the methods to identify/recover the channels and the sources. BSS/ICA of nonlinear mixing models are difficult problems. For instance, the post-nonlinear model has been studied by several authors. It is noticed that in most cases, the proposed models are always with an invertible mixing. According to this fact there is an interesting question, how about the situation of the non-invertible non-linear mixing in BSS or ICA? A new simple non-linear mixing model is proposed with a kind of non-invertible mixing, the folding mixing, and method to identify its channel, blindly.展开更多
In this paper, we propose two novel semi-blind channel estimation techniques based on QR decomposition for Rayleigh flat fading Multiple Input Multiple output (MIMO) channel using various pilot symbols. In the first t...In this paper, we propose two novel semi-blind channel estimation techniques based on QR decomposition for Rayleigh flat fading Multiple Input Multiple output (MIMO) channel using various pilot symbols. In the first technique, the flat-fading MIMO channel matrix H can be decomposed as an upper triangular matrix R and a unitary rotation matrix Q as H = RQ. The matrix R is estimated blindly from only received data by using orthogonal matrix triangularization based house holder QR decomposition, while the optimum rotation matrix Q is estimated exclusively from pilot based Orthogonal Pilot Maximum Likelihood Estimator (OPML) algorithm. In the second technique, joint semi-blind channel and data estimation is performed using QR decomposition based Least Square (LS) algorithm. Simulations have taken under 4-PSK data modulation scheme for two transmitters and six receiver antennas using various training symbols. Finally, these two new techniques compare with Whitening Rotation (WR) based semi-blind channel estimation technique and results shows that those new techniques achieve very nearby performance with low complexity compare to Whitening rotation based technique. Also first technique with perfect R outperforms Whitening Rotation based technique.展开更多
A novel blind channel estimation method based on a simple coding scheme for a 2 by 2 multiple input multiple output (MIMO) system is described. The proposed algorithm is easy to implement in comparison with convention...A novel blind channel estimation method based on a simple coding scheme for a 2 by 2 multiple input multiple output (MIMO) system is described. The proposed algorithm is easy to implement in comparison with conventional blind estimation algorithms, as it is able to recover the channel matrix without performing singular value decomposition (SVD) or eigenvalue decomposition (EVD). The block coding scheme accompanying the proposed estimation approach requires only a block encoder at the transmitter without the need of using the decoder at the receiver. The proposed block coding scheme offers the full coding rate and reduces the noise power to half of its original value. It eliminates the phase ambiguity using only one additional pilot sequence.展开更多
A modified constant modulus algorithm (MCMA) for blind channel equalization is proposed by modifying the constant modulus error function. The MCMA is compared with the conventional constant modulus algorithm (CMA) for...A modified constant modulus algorithm (MCMA) for blind channel equalization is proposed by modifying the constant modulus error function. The MCMA is compared with the conventional constant modulus algorithm (CMA) for symbol-spaced equalization of 4PSK signals. The result shows that the performance of the MCMA is superior to that of the CMA in both convergence rate and intersymbol interference for frequency selective channels in noisy environments. Simulation results using 8PSK signals also demonstrate that a fractionally spaced equalizer can preserve performance over variations in symbol-timing phase, whereas a baud-rate equalizer cannot.展开更多
In this paper, the distributed and recursive blind channel identification algorithms are proposed for single-input multi-output (SIMO) systems of sensor networks (both time-invariant and time-varying networks). At...In this paper, the distributed and recursive blind channel identification algorithms are proposed for single-input multi-output (SIMO) systems of sensor networks (both time-invariant and time-varying networks). At any time, each agent updates its estimate using the local observation and the information derived from its neighboring agents. The algorithms are based on the truncated stochastic approximation and their convergence is proved. A simulation example is presented and the computation results are shown to be consistent with theoretical analysis.展开更多
An orthogonal frequency division multiplexing (OFDM) is one of the effective techniques used in wireless communication. In OFDM systems, channel impairments due to multipath dispersive spreading can cause deep fades...An orthogonal frequency division multiplexing (OFDM) is one of the effective techniques used in wireless communication. In OFDM systems, channel impairments due to multipath dispersive spreading can cause deep fades in wireless channels. Thus, the OFDM receiver requires channel state information when coherent detection is involved. Therefore, to overcome the impact of channel fades good channel estimation (CE) methods are needed in OFDM systems. And one of these CE methods is a semi-blind CE. However, the semi-blind method requires a large number of processing operations. In order to avoid the high computing complexity of the existing method, scaled least square (SLS) technique is applied to improve the performance of the semi-blind channel estimator which require less knowledge of the channel second-order statistics and have better performance than the least square (LS) which used in semi-blind CE. Simulation results shows, this proposed method of semi-blind CE has the capacity of elevating CE performance in multiple-input multiple-output (MIMO) OFDM systems.展开更多
In this paper, a joint semi blind channel estimation and data sequence detection of OFDM systems over the multipath frequency selective fading channels is proposed and investigated. The basic idea of the algorithm is...In this paper, a joint semi blind channel estimation and data sequence detection of OFDM systems over the multipath frequency selective fading channels is proposed and investigated. The basic idea of the algorithm is to first use the correlation among adjacent subchannels in the frequency domain to estimate the channel's parameters with an AutoRegressive (AR) process based on the decision directed estimation principle, and then to search the ML solution using the Viterbi algorithm. The algorithm realizes on line channel estimation and data detection of OFDM signals without any periodic pilot signal and statistic information about the channels, so it is suited to high data rate transmission over slow fading channels in the coming generation mobile communication systems.展开更多
Blind equalization based on adaptive forgetting factor, recursive least squares (RLS) with constant modulus algorithm (CMA), is investigated. The cost function of CMA is simplified to meet the second norm form to ...Blind equalization based on adaptive forgetting factor, recursive least squares (RLS) with constant modulus algorithm (CMA), is investigated. The cost function of CMA is simplified to meet the second norm form to ensure the stability of RLS-CMA, and thus an improved RLS-CMA (RLS-SCMA) is established. To further improve its performance, a new adaptive forgetting factor RLS-SCMA (ARLS-SCMA) is proposed. In ARLS-SCMA, the forgetting factor varies with the output error of the blind equalizer during the iterative process, which leads to a faster convergence rate and a smaller steady-state error. The simulation results prove the effectiveness under the condition of the underwater acoustic channel.展开更多
文摘In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because the transmission equation of OFDM systems does not exactly have the desired structure to directly derive a subspace algorithm,the algorithm first divides the OFDM signals into three parts,then,by exploiting the redundancy introduced by the cyclic prefix (CP) in OFDM signals,a new equation with Toeplitz channel matrix is derived.Based on the equation,a new blind subspace algorithm is developed.Toeplitz structure eases the derivation of the subspace algorithm and practical computation.Moreover the algorithm does not change the existing OFDM system,is robust to channel order overdetermination,and the channel zero locations.The performances are demonstrated by simulation results.
基金supported by the National Science and Technology Major Project of China(2013ZX03003006-003)
文摘To remove the scalar ambiguity in conventional blind channel estimation algorithms, totally blind channel estimation (TBCE) is proposed by using multiple constellations. To estimate the unknown scalar, its phase is decomposed into a fractional phase and an integer phase. However, the maximum-likelihood (ML) algorithm for the fractional phase does not have closed-form solutions and suffers from high computational complexity. By ex- ploring the structures of widely used constellations, this paper proposes a low-complexity fractional phase estimation algorithm which requires no exhaustive search. Analytical expressions of the asymptotic mean squared error (MSE) are also derived. The theo- retical analysis and simulation results indicate that the proposed fractional phase estimation algorithm exhibits almost the same performance as the ML algorithm but with significantly reduced computational burden.
基金Supported by Jiangsu Natural Science Fund (BK2003015) National Mobile Communications Research Laboratory Fund (N0302).
文摘Compared with the traditional channel estimation methods, blind channel estimation methods can increase the bandwidth efficiency of the systems, but their precision is low and they converge slowly. In this paper, the Cramér-Rao Bound (CRB) for blind channel estimation in complex-valued Single-Input Multiple- Output (SIMO) channel is derived. In the simulations, the correctness of the CRB is validated and some channel estimation methods are evaluated by using the CRB.
基金Supported by National Natural Science Foundation of China (No. 60872123)Joint Fund of National Natural Science Foundation of China and Guangdong Provincial Natural Science Foundation (No. U0835001)Fundamental Research Funds for Central Universities (No. 2011ZM0033)
文摘To reduce channel noise,fading,and inter-user interference effectively in the chaotic communication systems with multi-user,a blind channel equalization algorithm based on dual unscented Kalman filter algorithm is proposed.Assuming that the coefficients of a multi-input multi-output (MIMO) channel can be described by an autoregressive model,two separate state-space representations are used for the signals and coefficients.Then two unscented Kalman filters are used to estimate chaotic signals and channel coefficients simultaneously.The simulation results indicate that the algorithm can effectively track the coefficients of the multi-path fading channel in chaotic MIMO communication systems at a fast convergence speed.
基金This project was supported by the National Natural Science Foundation of China (60572157)National Hi-Tech Research and Development Program (863) of China (2003AA123310).
文摘Considering that channel estimation can play a crucial role in coherent detection of the information symbols in each data block, a blind channel estimation approach is proposed for redundant precoded orthogonal frequency-division multiplexing (OFDM) systems. A redundant linear frequency-domain precoder is applied to each pair of blocks before they enter the OFDM system. Because of the introduced structure, the frequency-selective channel can be identified at the receiver based on autocorrelation operations, singular value decomposition (SVD), and by resolving the scalar ambiguity. The proposed channel estimation method has low computational complexity and requires no prior statistical information on channel or noise. And the proposed blind method has high spectral efficiency owing to exploiting no training sequence. Computer simulations confirm that this proposed blind channel estimation method can identify the frequency-selective channels perfectly and obtain a good performance.
基金Supported by the Scientific Development Fund of Shanghai Scientific Committee(037062022)
文摘A subspace-based blind channel estination algo rithm for MIMO-OFDM systems is proposed. This algorithm exploits the cyclostationarity introduced by cyclic prefix of OFDM to estimate the channel parameters. The proposed new algorithm is found to be outperforming the other algorithm with respect to convergence rate and achievable mean square error and robustness to channel order over determination.
基金the National Natural Science Foundation of China (No.69872029)
文摘Delay diversity is an effective transmit diversity technique to combat adverse effects of fading. Thus far, previous work in delay diversity assumed that perfect estimates of current channel fading conditions are available at the receiver and training symbols are required to estimate the channel from the transmitter to the receiver. However, increasing the number of the antennas increases the required training interval and reduces the available time with in whichdata may be transmitted. Learning the channel coefficients becomes increasingly difficult for the frequency selective channels. In this paper, with the subspace method and the delay character of delay diversity, a channel estimation method is proposed, which does not use training symbols. It addresses the transmit diversity for a frequency selective channel from a single carrier perspective in the form of a simple equivalent flat fading model. Monte Carlo simulations give the performance of channel estimation and the performance comparison of our channel-estimation-based detector with decision feedback equalization, which uses the perfect channel information.
基金Sponsored by the National Natural Science Foundation of China (No.60572157), the High Technology Research and Development Program of China (No.2003AA123310) and Sharp Electronics(Shanghai) Co., Ltd.
文摘A novel approach of blind channel estimation through redundant linear precoding for orthogonal fre-quency-division multiplexing (OFDM) is proposed. A redundant linear frequency-domain preceder is ap-plied to each pair of blocks before they enter the OFDM system. With the aid of the introduced structure, the frequency-selective channel can be identified at the receiver through auto-correlation operations, sin-gular value decomposition (SVD) and scalar ambiguity resolution. The proposed blind channel estimation method has low computation complexity and requires no prior statistical information of channel or noise. The redundant linear frequency-domain precoder is employed to identify the frequency-selective fading channels. And the proposed blind channel estimation method has high spectral efficiency because it re-quires no training sequence. Computer simulations have proved that this proposed blind channel estima- tion method can identify the frequency-selective channels perfectly and have a good performance.
文摘The decoupled coherent Maximum Likelihood (ML) detection algorithm presented in this letter can sharply reduce the complexity of the receiver as well as provide better error performance under the precondition that channel should be estimated first. Considering the bandwidth inefficiency of Frequency Shift Keying (FSK), the acquisition of channel state information through training sequences will further decrease the transmission efficiency. This letter presents a blind channel estimation algorithm based on noise subspace theory which can acquire channel information without any training symbols. The simulation shows that the algorithm brings about fewer channel estimation errors while the frequency efficiency can be increased.
文摘A semi-blind channel estimation algorithm based on subspace approach for orthogonal frequency division multiplexing(OFDM) systems over the frequency-selective channel is proposed. A linear preeoding is applied on each block before the IFFT operation and a low-rank structure is created in the received signal. Then subspace properties can be exploited to identify the channel up to a scalar ambiguity. The residual scalar ambiguities eliminated by inserting pilots into data stream. Simulation results illustrate the performance of the proposed semi-blind algorithm.
文摘An adaptive bit loading and power-allocation scheme is proposed in order to augment the performance of the system based on orthogonal frequency division multiplexing (OFDM), which is based on the maximum power margin. Coinciding with the adaptive loading scheme, a semi-blind channel estimation algorithm using subspace decomposition method is proposed, which uses the information in the cyclic prefix. An initial channel state information is estimated by using the training sequences with the method of interpolation filtering. The proposed adaptive scheme is simulated on an OFDM wireless local area network(WLAN) system in a time-varying channel. The performance is compared to the constant loading scheme.
基金This project was supported by the Talent Foundation of Anhui Province(2004Z025)
文摘Signals from multi-sensor systems are often mixtures of (statistically) independent sources by unknown mixing method. Blind source separation(BSS) and independent component analysis(ICA) are the methods to identify/recover the channels and the sources. BSS/ICA of nonlinear mixing models are difficult problems. For instance, the post-nonlinear model has been studied by several authors. It is noticed that in most cases, the proposed models are always with an invertible mixing. According to this fact there is an interesting question, how about the situation of the non-invertible non-linear mixing in BSS or ICA? A new simple non-linear mixing model is proposed with a kind of non-invertible mixing, the folding mixing, and method to identify its channel, blindly.
文摘In this paper, we propose two novel semi-blind channel estimation techniques based on QR decomposition for Rayleigh flat fading Multiple Input Multiple output (MIMO) channel using various pilot symbols. In the first technique, the flat-fading MIMO channel matrix H can be decomposed as an upper triangular matrix R and a unitary rotation matrix Q as H = RQ. The matrix R is estimated blindly from only received data by using orthogonal matrix triangularization based house holder QR decomposition, while the optimum rotation matrix Q is estimated exclusively from pilot based Orthogonal Pilot Maximum Likelihood Estimator (OPML) algorithm. In the second technique, joint semi-blind channel and data estimation is performed using QR decomposition based Least Square (LS) algorithm. Simulations have taken under 4-PSK data modulation scheme for two transmitters and six receiver antennas using various training symbols. Finally, these two new techniques compare with Whitening Rotation (WR) based semi-blind channel estimation technique and results shows that those new techniques achieve very nearby performance with low complexity compare to Whitening rotation based technique. Also first technique with perfect R outperforms Whitening Rotation based technique.
文摘A novel blind channel estimation method based on a simple coding scheme for a 2 by 2 multiple input multiple output (MIMO) system is described. The proposed algorithm is easy to implement in comparison with conventional blind estimation algorithms, as it is able to recover the channel matrix without performing singular value decomposition (SVD) or eigenvalue decomposition (EVD). The block coding scheme accompanying the proposed estimation approach requires only a block encoder at the transmitter without the need of using the decoder at the receiver. The proposed block coding scheme offers the full coding rate and reduces the noise power to half of its original value. It eliminates the phase ambiguity using only one additional pilot sequence.
基金the National Natural Science Foundation of China (60072001)
文摘A modified constant modulus algorithm (MCMA) for blind channel equalization is proposed by modifying the constant modulus error function. The MCMA is compared with the conventional constant modulus algorithm (CMA) for symbol-spaced equalization of 4PSK signals. The result shows that the performance of the MCMA is superior to that of the CMA in both convergence rate and intersymbol interference for frequency selective channels in noisy environments. Simulation results using 8PSK signals also demonstrate that a fractionally spaced equalizer can preserve performance over variations in symbol-timing phase, whereas a baud-rate equalizer cannot.
文摘In this paper, the distributed and recursive blind channel identification algorithms are proposed for single-input multi-output (SIMO) systems of sensor networks (both time-invariant and time-varying networks). At any time, each agent updates its estimate using the local observation and the information derived from its neighboring agents. The algorithms are based on the truncated stochastic approximation and their convergence is proved. A simulation example is presented and the computation results are shown to be consistent with theoretical analysis.
基金supported by the National Natural Science Foundation of China (61172038)
文摘An orthogonal frequency division multiplexing (OFDM) is one of the effective techniques used in wireless communication. In OFDM systems, channel impairments due to multipath dispersive spreading can cause deep fades in wireless channels. Thus, the OFDM receiver requires channel state information when coherent detection is involved. Therefore, to overcome the impact of channel fades good channel estimation (CE) methods are needed in OFDM systems. And one of these CE methods is a semi-blind CE. However, the semi-blind method requires a large number of processing operations. In order to avoid the high computing complexity of the existing method, scaled least square (SLS) technique is applied to improve the performance of the semi-blind channel estimator which require less knowledge of the channel second-order statistics and have better performance than the least square (LS) which used in semi-blind CE. Simulation results shows, this proposed method of semi-blind CE has the capacity of elevating CE performance in multiple-input multiple-output (MIMO) OFDM systems.
文摘In this paper, a joint semi blind channel estimation and data sequence detection of OFDM systems over the multipath frequency selective fading channels is proposed and investigated. The basic idea of the algorithm is to first use the correlation among adjacent subchannels in the frequency domain to estimate the channel's parameters with an AutoRegressive (AR) process based on the decision directed estimation principle, and then to search the ML solution using the Viterbi algorithm. The algorithm realizes on line channel estimation and data detection of OFDM signals without any periodic pilot signal and statistic information about the channels, so it is suited to high data rate transmission over slow fading channels in the coming generation mobile communication systems.
基金financially supported in part by the National Natural Science Foundation of China(Grant No.61201418)Fundamental Research Funds for the Central Universities(Grant No.DC12010218)Scientific and Technological Research Project for Education Department of Liaoning Province(Grant No.2010046)
文摘Blind equalization based on adaptive forgetting factor, recursive least squares (RLS) with constant modulus algorithm (CMA), is investigated. The cost function of CMA is simplified to meet the second norm form to ensure the stability of RLS-CMA, and thus an improved RLS-CMA (RLS-SCMA) is established. To further improve its performance, a new adaptive forgetting factor RLS-SCMA (ARLS-SCMA) is proposed. In ARLS-SCMA, the forgetting factor varies with the output error of the blind equalizer during the iterative process, which leads to a faster convergence rate and a smaller steady-state error. The simulation results prove the effectiveness under the condition of the underwater acoustic channel.