In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because t...In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because the transmission equation of OFDM systems does not exactly have the desired structure to directly derive a subspace algorithm,the algorithm first divides the OFDM signals into three parts,then,by exploiting the redundancy introduced by the cyclic prefix (CP) in OFDM signals,a new equation with Toeplitz channel matrix is derived.Based on the equation,a new blind subspace algorithm is developed.Toeplitz structure eases the derivation of the subspace algorithm and practical computation.Moreover the algorithm does not change the existing OFDM system,is robust to channel order overdetermination,and the channel zero locations.The performances are demonstrated by simulation results.展开更多
To remove the scalar ambiguity in conventional blind channel estimation algorithms, totally blind channel estimation (TBCE) is proposed by using multiple constellations. To estimate the unknown scalar, its phase is ...To remove the scalar ambiguity in conventional blind channel estimation algorithms, totally blind channel estimation (TBCE) is proposed by using multiple constellations. To estimate the unknown scalar, its phase is decomposed into a fractional phase and an integer phase. However, the maximum-likelihood (ML) algorithm for the fractional phase does not have closed-form solutions and suffers from high computational complexity. By ex- ploring the structures of widely used constellations, this paper proposes a low-complexity fractional phase estimation algorithm which requires no exhaustive search. Analytical expressions of the asymptotic mean squared error (MSE) are also derived. The theo- retical analysis and simulation results indicate that the proposed fractional phase estimation algorithm exhibits almost the same performance as the ML algorithm but with significantly reduced computational burden.展开更多
Compared with the traditional channel estimation methods, blind channel estimation methods can increase the bandwidth efficiency of the systems, but their precision is low and they converge slowly. In this paper, the ...Compared with the traditional channel estimation methods, blind channel estimation methods can increase the bandwidth efficiency of the systems, but their precision is low and they converge slowly. In this paper, the Cramér-Rao Bound (CRB) for blind channel estimation in complex-valued Single-Input Multiple- Output (SIMO) channel is derived. In the simulations, the correctness of the CRB is validated and some channel estimation methods are evaluated by using the CRB.展开更多
Considering that channel estimation can play a crucial role in coherent detection of the information symbols in each data block, a blind channel estimation approach is proposed for redundant precoded orthogonal freque...Considering that channel estimation can play a crucial role in coherent detection of the information symbols in each data block, a blind channel estimation approach is proposed for redundant precoded orthogonal frequency-division multiplexing (OFDM) systems. A redundant linear frequency-domain precoder is applied to each pair of blocks before they enter the OFDM system. Because of the introduced structure, the frequency-selective channel can be identified at the receiver based on autocorrelation operations, singular value decomposition (SVD), and by resolving the scalar ambiguity. The proposed channel estimation method has low computational complexity and requires no prior statistical information on channel or noise. And the proposed blind method has high spectral efficiency owing to exploiting no training sequence. Computer simulations confirm that this proposed blind channel estimation method can identify the frequency-selective channels perfectly and obtain a good performance.展开更多
A subspace-based blind channel estination algo rithm for MIMO-OFDM systems is proposed. This algorithm exploits the cyclostationarity introduced by cyclic prefix of OFDM to estimate the channel parameters. The propose...A subspace-based blind channel estination algo rithm for MIMO-OFDM systems is proposed. This algorithm exploits the cyclostationarity introduced by cyclic prefix of OFDM to estimate the channel parameters. The proposed new algorithm is found to be outperforming the other algorithm with respect to convergence rate and achievable mean square error and robustness to channel order over determination.展开更多
Delay diversity is an effective transmit diversity technique to combat adverse effects of fading. Thus far, previous work in delay diversity assumed that perfect estimates of current channel fading conditions are ava...Delay diversity is an effective transmit diversity technique to combat adverse effects of fading. Thus far, previous work in delay diversity assumed that perfect estimates of current channel fading conditions are available at the receiver and training symbols are required to estimate the channel from the transmitter to the receiver. However, increasing the number of the antennas increases the required training interval and reduces the available time with in whichdata may be transmitted. Learning the channel coefficients becomes increasingly difficult for the frequency selective channels. In this paper, with the subspace method and the delay character of delay diversity, a channel estimation method is proposed, which does not use training symbols. It addresses the transmit diversity for a frequency selective channel from a single carrier perspective in the form of a simple equivalent flat fading model. Monte Carlo simulations give the performance of channel estimation and the performance comparison of our channel-estimation-based detector with decision feedback equalization, which uses the perfect channel information.展开更多
A novel approach of blind channel estimation through redundant linear precoding for orthogonal fre-quency-division multiplexing (OFDM) is proposed. A redundant linear frequency-domain preceder is ap-plied to each pa...A novel approach of blind channel estimation through redundant linear precoding for orthogonal fre-quency-division multiplexing (OFDM) is proposed. A redundant linear frequency-domain preceder is ap-plied to each pair of blocks before they enter the OFDM system. With the aid of the introduced structure, the frequency-selective channel can be identified at the receiver through auto-correlation operations, sin-gular value decomposition (SVD) and scalar ambiguity resolution. The proposed blind channel estimation method has low computation complexity and requires no prior statistical information of channel or noise. The redundant linear frequency-domain precoder is employed to identify the frequency-selective fading channels. And the proposed blind channel estimation method has high spectral efficiency because it re-quires no training sequence. Computer simulations have proved that this proposed blind channel estima- tion method can identify the frequency-selective channels perfectly and have a good performance.展开更多
The decoupled coherent Maximum Likelihood (ML) detection algorithm presented in this letter can sharply reduce the complexity of the receiver as well as provide better error performance under the precondition that cha...The decoupled coherent Maximum Likelihood (ML) detection algorithm presented in this letter can sharply reduce the complexity of the receiver as well as provide better error performance under the precondition that channel should be estimated first. Considering the bandwidth inefficiency of Frequency Shift Keying (FSK), the acquisition of channel state information through training sequences will further decrease the transmission efficiency. This letter presents a blind channel estimation algorithm based on noise subspace theory which can acquire channel information without any training symbols. The simulation shows that the algorithm brings about fewer channel estimation errors while the frequency efficiency can be increased.展开更多
Many blind channel estimation methods have been proposed for direct sequence (DS) code-division multiple access (CDMA) systems, so we can certainly use them to estimate the finite impulse response (FIR) channel for th...Many blind channel estimation methods have been proposed for direct sequence (DS) code-division multiple access (CDMA) systems, so we can certainly use them to estimate the finite impulse response (FIR) channel for the multi-carrier (MC-) CDMA system. In this paper, the MC-CDMA system is interpreted as an equivalent time-domain DS-CD-MA system with specific spreading codes. Then, an equivalently time-domain blind channel estimator is derived for the uplink MC-CDMA, which is based on second-order statistics of the received data. By exploiting singular value decomposition (SVD) and the finite alphabet property of transmitted symbols, the time-domain channel impulse response (CIR) for the uplink MC-CDMA can be accurately identified. Computer simulations illustrate both the validity and the overall performance of the proposed estimator.展开更多
A novel discrete-time digital inter-symbol interference (ISI) channel blind estimation sub-optimal algorithm is proposed. This algorithm reduces the complexity of the optimal maximum likelihood sequence estimation (ML...A novel discrete-time digital inter-symbol interference (ISI) channel blind estimation sub-optimal algorithm is proposed. This algorithm reduces the complexity of the optimal maximum likelihood sequence estimation (MLSE) considerably based on the one-step branch transition rules in trellises, and is suitable for the estimation of the channels with small lengths of ISI.展开更多
Cognitive radio is an effective technology to alleviate the spectrum resource scarcity problem by opportunistically allocating the spare spectrum to unauthorized users. However, a serious denial-of-service(DoS) attack...Cognitive radio is an effective technology to alleviate the spectrum resource scarcity problem by opportunistically allocating the spare spectrum to unauthorized users. However, a serious denial-of-service(DoS) attack,named the ‘primary user emulation attack(PUEA)', exists in the network to deteriorate the system performance. In this paper, we propose a PUEA detection method that exploits the radio channel information to detect the PUEA in the cognitive radio network. In the proposed method, the uniqueness of the channel impulse response(CIR) between the secondary user(SU) and the signal source is used to determine whether the received signal is transmitted by the primary user(PU) or the primary user emulator(PUE). The closed-form expressions for the false-alarm probability and the detection probability of the proposed PUEA detection method are derived. In addition, a modified subspace-based blind channel estimation method is presented to estimate the CIR, in order for the proposed PUEA detection method to work in the scenario where the SU has no prior knowledge about the structure and content of the PU signal. Numerical results show that the proposed PUEA detection method performs well although the difference in channel characteristics between the PU and PUE is small.展开更多
文摘In order to increase the transmission efficiency,a subspace-based algorithm for blind channel estimation using second-order statistics is proposed in orthogonal frequency division multiplexing (OFDM) systems.Because the transmission equation of OFDM systems does not exactly have the desired structure to directly derive a subspace algorithm,the algorithm first divides the OFDM signals into three parts,then,by exploiting the redundancy introduced by the cyclic prefix (CP) in OFDM signals,a new equation with Toeplitz channel matrix is derived.Based on the equation,a new blind subspace algorithm is developed.Toeplitz structure eases the derivation of the subspace algorithm and practical computation.Moreover the algorithm does not change the existing OFDM system,is robust to channel order overdetermination,and the channel zero locations.The performances are demonstrated by simulation results.
基金supported by the National Science and Technology Major Project of China(2013ZX03003006-003)
文摘To remove the scalar ambiguity in conventional blind channel estimation algorithms, totally blind channel estimation (TBCE) is proposed by using multiple constellations. To estimate the unknown scalar, its phase is decomposed into a fractional phase and an integer phase. However, the maximum-likelihood (ML) algorithm for the fractional phase does not have closed-form solutions and suffers from high computational complexity. By ex- ploring the structures of widely used constellations, this paper proposes a low-complexity fractional phase estimation algorithm which requires no exhaustive search. Analytical expressions of the asymptotic mean squared error (MSE) are also derived. The theo- retical analysis and simulation results indicate that the proposed fractional phase estimation algorithm exhibits almost the same performance as the ML algorithm but with significantly reduced computational burden.
基金Supported by Jiangsu Natural Science Fund (BK2003015) National Mobile Communications Research Laboratory Fund (N0302).
文摘Compared with the traditional channel estimation methods, blind channel estimation methods can increase the bandwidth efficiency of the systems, but their precision is low and they converge slowly. In this paper, the Cramér-Rao Bound (CRB) for blind channel estimation in complex-valued Single-Input Multiple- Output (SIMO) channel is derived. In the simulations, the correctness of the CRB is validated and some channel estimation methods are evaluated by using the CRB.
基金This project was supported by the National Natural Science Foundation of China (60572157)National Hi-Tech Research and Development Program (863) of China (2003AA123310).
文摘Considering that channel estimation can play a crucial role in coherent detection of the information symbols in each data block, a blind channel estimation approach is proposed for redundant precoded orthogonal frequency-division multiplexing (OFDM) systems. A redundant linear frequency-domain precoder is applied to each pair of blocks before they enter the OFDM system. Because of the introduced structure, the frequency-selective channel can be identified at the receiver based on autocorrelation operations, singular value decomposition (SVD), and by resolving the scalar ambiguity. The proposed channel estimation method has low computational complexity and requires no prior statistical information on channel or noise. And the proposed blind method has high spectral efficiency owing to exploiting no training sequence. Computer simulations confirm that this proposed blind channel estimation method can identify the frequency-selective channels perfectly and obtain a good performance.
基金Supported by the Scientific Development Fund of Shanghai Scientific Committee(037062022)
文摘A subspace-based blind channel estination algo rithm for MIMO-OFDM systems is proposed. This algorithm exploits the cyclostationarity introduced by cyclic prefix of OFDM to estimate the channel parameters. The proposed new algorithm is found to be outperforming the other algorithm with respect to convergence rate and achievable mean square error and robustness to channel order over determination.
基金the National Natural Science Foundation of China (No.69872029)
文摘Delay diversity is an effective transmit diversity technique to combat adverse effects of fading. Thus far, previous work in delay diversity assumed that perfect estimates of current channel fading conditions are available at the receiver and training symbols are required to estimate the channel from the transmitter to the receiver. However, increasing the number of the antennas increases the required training interval and reduces the available time with in whichdata may be transmitted. Learning the channel coefficients becomes increasingly difficult for the frequency selective channels. In this paper, with the subspace method and the delay character of delay diversity, a channel estimation method is proposed, which does not use training symbols. It addresses the transmit diversity for a frequency selective channel from a single carrier perspective in the form of a simple equivalent flat fading model. Monte Carlo simulations give the performance of channel estimation and the performance comparison of our channel-estimation-based detector with decision feedback equalization, which uses the perfect channel information.
基金Sponsored by the National Natural Science Foundation of China (No.60572157), the High Technology Research and Development Program of China (No.2003AA123310) and Sharp Electronics(Shanghai) Co., Ltd.
文摘A novel approach of blind channel estimation through redundant linear precoding for orthogonal fre-quency-division multiplexing (OFDM) is proposed. A redundant linear frequency-domain preceder is ap-plied to each pair of blocks before they enter the OFDM system. With the aid of the introduced structure, the frequency-selective channel can be identified at the receiver through auto-correlation operations, sin-gular value decomposition (SVD) and scalar ambiguity resolution. The proposed blind channel estimation method has low computation complexity and requires no prior statistical information of channel or noise. The redundant linear frequency-domain precoder is employed to identify the frequency-selective fading channels. And the proposed blind channel estimation method has high spectral efficiency because it re-quires no training sequence. Computer simulations have proved that this proposed blind channel estima- tion method can identify the frequency-selective channels perfectly and have a good performance.
文摘The decoupled coherent Maximum Likelihood (ML) detection algorithm presented in this letter can sharply reduce the complexity of the receiver as well as provide better error performance under the precondition that channel should be estimated first. Considering the bandwidth inefficiency of Frequency Shift Keying (FSK), the acquisition of channel state information through training sequences will further decrease the transmission efficiency. This letter presents a blind channel estimation algorithm based on noise subspace theory which can acquire channel information without any training symbols. The simulation shows that the algorithm brings about fewer channel estimation errors while the frequency efficiency can be increased.
基金This project was supported by the National Natural Science Foundation of China (No. 69872029) the Research Fund for Doctoral Program of Higher Education of China (No. 1999069808).
文摘Many blind channel estimation methods have been proposed for direct sequence (DS) code-division multiple access (CDMA) systems, so we can certainly use them to estimate the finite impulse response (FIR) channel for the multi-carrier (MC-) CDMA system. In this paper, the MC-CDMA system is interpreted as an equivalent time-domain DS-CD-MA system with specific spreading codes. Then, an equivalently time-domain blind channel estimator is derived for the uplink MC-CDMA, which is based on second-order statistics of the received data. By exploiting singular value decomposition (SVD) and the finite alphabet property of transmitted symbols, the time-domain channel impulse response (CIR) for the uplink MC-CDMA can be accurately identified. Computer simulations illustrate both the validity and the overall performance of the proposed estimator.
基金The work is supported by Projuct No.69872008 of NNSF of P.R. China.
文摘A novel discrete-time digital inter-symbol interference (ISI) channel blind estimation sub-optimal algorithm is proposed. This algorithm reduces the complexity of the optimal maximum likelihood sequence estimation (MLSE) considerably based on the one-step branch transition rules in trellises, and is suitable for the estimation of the channels with small lengths of ISI.
基金supported by the National Natural Science Foundation of China(Nos.61471318 and 61671410)the Zhejiang Provincial Natural Science Foundation of China(No.LY14F010014)the State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System,China(No.CEMEE2015Z0202A)
文摘Cognitive radio is an effective technology to alleviate the spectrum resource scarcity problem by opportunistically allocating the spare spectrum to unauthorized users. However, a serious denial-of-service(DoS) attack,named the ‘primary user emulation attack(PUEA)', exists in the network to deteriorate the system performance. In this paper, we propose a PUEA detection method that exploits the radio channel information to detect the PUEA in the cognitive radio network. In the proposed method, the uniqueness of the channel impulse response(CIR) between the secondary user(SU) and the signal source is used to determine whether the received signal is transmitted by the primary user(PU) or the primary user emulator(PUE). The closed-form expressions for the false-alarm probability and the detection probability of the proposed PUEA detection method are derived. In addition, a modified subspace-based blind channel estimation method is presented to estimate the CIR, in order for the proposed PUEA detection method to work in the scenario where the SU has no prior knowledge about the structure and content of the PU signal. Numerical results show that the proposed PUEA detection method performs well although the difference in channel characteristics between the PU and PUE is small.