Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting sin...Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security.展开更多
RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In s...RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In simulation analysis,RLS and the LMS blind adaptive multi-user detector were designed and tested for synchronous and asynchronous multi-user communication process.The results of SIR comparison and MMSE comparison show that,both of the two methods can realize blind adaptive detection when any user change in multi-user communication,during this process,the training communication sequences are not needed.The RLS algorithm has about 5 dB higher in SIR compared with LMS algorithm,and the convergence velocity of RLS algorithm is also higher than LMS algorithm when the communication users change.RLS algorithm has better ability in multi-user detection than that of LMS algorithm,and it has great attraction and guiding significance for solving the problem of multiple access interference(MAI) in multi-user communication.展开更多
Blind adaptive multiuser detector has become a research hotspot in recent years due to a number of advantages, but many blind adaptive algorithms involve low convergence rate. This paper presents a novel stochastic bl...Blind adaptive multiuser detector has become a research hotspot in recent years due to a number of advantages, but many blind adaptive algorithms involve low convergence rate. This paper presents a novel stochastic blind adaptive multiuser detector without requiring training sequences, which needs only two system parameters: the signature sequence of the desired user i, s i and the variance of the additive white Gaussian noise (AWGN),σ 2. Simulation results show that by reasonably choosing time varying step size, the proposed detector can not only improve the convergence rate, but also reduce the limiting NSE (Normalized Squared Error) values, so it can effectively increase the performance of the system.展开更多
In a practical quantum key distribution(QKD) system, imperfect equipment, especially the single-photon detector,can be eavesdropped on by a blinding attack. However, the original blinding attack may be discovered by...In a practical quantum key distribution(QKD) system, imperfect equipment, especially the single-photon detector,can be eavesdropped on by a blinding attack. However, the original blinding attack may be discovered by directly detecting the current. In this paper, we propose a probabilistic blinding attack model, where Eve probabilistically applies a blinding attack without being caught by using only an existing intuitive countermeasure. More precisely, our countermeasure solves the problem of how to define the bound in the limitation of precision of current detection, and then we prove security of the practical system by considering the current parameter. Meanwhile, we discuss the bound of the quantum bit error rate(QBER) introduced by Eve, by which Eve can acquire information without the countermeasure.展开更多
Due to a number of advantages, blind adaptive multiuser detector has become a research hotspot in recent years. But low convergence rate problem occurs to many blind adaptive algorithms. A new blind adaptive approach ...Due to a number of advantages, blind adaptive multiuser detector has become a research hotspot in recent years. But low convergence rate problem occurs to many blind adaptive algorithms. A new blind adaptive approach to multiuser detection is presented. The simulation results show that by reasonably choosing time varying step size, the proposed detector can not only improve the convergence rate, but also reduce the bit error rate (BER) of the system, and so it can effectively improve the system performance with less computational cost.展开更多
Multiple Path Interference (MPI) and Multiple Access Interference (MAI) are important factors that affect the performance of Chinese Area Positioning System (CAPS). These problems can be solved by using spreading sequ...Multiple Path Interference (MPI) and Multiple Access Interference (MAI) are important factors that affect the performance of Chinese Area Positioning System (CAPS). These problems can be solved by using spreading sequences with ideal properties and multi-user detectors. Chaotic sequences based on Chebyshev map are studied and the satellite communication system model is set up to investigate the application of chaotic sequences for CAPS in this paper. Simulation results show that chaotic sequences have desirable correlation properties and it is easy to generate a large number of chaotic sequences with good security. It has great practical value to apply chaotic sequences to CAPS together with multi-user detecting technology and the system performance can be improved greatly.展开更多
Application of Neural Network to signal detection in CDMA multi-user communications Gaussian channel is investigated. This paper is motivated by the fact that, in a multi-user CDMA system. the conventional receiver su...Application of Neural Network to signal detection in CDMA multi-user communications Gaussian channel is investigated. This paper is motivated by the fact that, in a multi-user CDMA system. the conventional receiver suffers severe performance degradation as the relative powers of the interfering signals become large(i.e. 'near-far problem'). Furthermore, in many cases, the optimum receiver which alleviates the near-far problem, is too complex to be of practical use. And by viewing this optimum multi-user detector problem in CDMA channel as an optimum nonlinear classification decision problem. we apply the Probabilistic Neural Network algorithm, which has the capacity of arbitrary nonlinear transformation, adaptive learning and tracking to implement this classification decision optimally and adaptively The performance of the Proposes neural detector is evaluated via computer simulations in terms of probability of detection and it is compared with those of the existing neural and conventional detector schemes in a multi-user environment.展开更多
基金This work was supported by the Major Scientific and Technological Special Project of Anhui Province(202103a13010004)the Major Scientific and Technological Special Project of Hefei City(2021DX007)+1 种基金the Key R&D Plan of Shandong Province(2020CXGC010105)the China Postdoctoral Science Foundation(2021M700315).
文摘Quantum key distribution(QKD),rooted in quantum mechanics,offers information-theoretic security.However,practi-cal systems open security threats due to imperfections,notably bright-light blinding attacks targeting single-photon detectors.Here,we propose a concise,robust defense strategy for protecting single-photon detectors in QKD systems against blinding attacks.Our strategy uses a dual approach:detecting the bias current of the avalanche photodiode(APD)to defend against con-tinuous-wave blinding attacks,and monitoring the avalanche amplitude to protect against pulsed blinding attacks.By integrat-ing these two branches,the proposed solution effectively identifies and mitigates a wide range of bright light injection attempts,significantly enhancing the resilience of QKD systems against various bright-light blinding attacks.This method forti-fies the safeguards of quantum communications and offers a crucial contribution to the field of quantum information security.
基金financially supported by Key Technologies R&D Program of Shandong Province(2015GSF115018)Natural Science Foundation of Shandong Province(ZR2013FL027+1 种基金ZR2013DM 014)Youth Foundation of Shandong Academy of Science(2013QN030)
文摘RLS and LMS blind adaptive multi-user detection algorithm and multi-user detector was proposed to solve the problem of multi-user signal detection problem encountered in underwater acoustic communication networks.In simulation analysis,RLS and the LMS blind adaptive multi-user detector were designed and tested for synchronous and asynchronous multi-user communication process.The results of SIR comparison and MMSE comparison show that,both of the two methods can realize blind adaptive detection when any user change in multi-user communication,during this process,the training communication sequences are not needed.The RLS algorithm has about 5 dB higher in SIR compared with LMS algorithm,and the convergence velocity of RLS algorithm is also higher than LMS algorithm when the communication users change.RLS algorithm has better ability in multi-user detection than that of LMS algorithm,and it has great attraction and guiding significance for solving the problem of multiple access interference(MAI) in multi-user communication.
文摘Blind adaptive multiuser detector has become a research hotspot in recent years due to a number of advantages, but many blind adaptive algorithms involve low convergence rate. This paper presents a novel stochastic blind adaptive multiuser detector without requiring training sequences, which needs only two system parameters: the signature sequence of the desired user i, s i and the variance of the additive white Gaussian noise (AWGN),σ 2. Simulation results show that by reasonably choosing time varying step size, the proposed detector can not only improve the convergence rate, but also reduce the limiting NSE (Normalized Squared Error) values, so it can effectively increase the performance of the system.
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CBA00200 and 2011CB921200)the National Natural Science Foundation of China(Grant Nos.61475148,61201239,61205118,and 11304397)the China Postdoctoral Science Foundation(Grant No.2013M540514)
文摘In a practical quantum key distribution(QKD) system, imperfect equipment, especially the single-photon detector,can be eavesdropped on by a blinding attack. However, the original blinding attack may be discovered by directly detecting the current. In this paper, we propose a probabilistic blinding attack model, where Eve probabilistically applies a blinding attack without being caught by using only an existing intuitive countermeasure. More precisely, our countermeasure solves the problem of how to define the bound in the limitation of precision of current detection, and then we prove security of the practical system by considering the current parameter. Meanwhile, we discuss the bound of the quantum bit error rate(QBER) introduced by Eve, by which Eve can acquire information without the countermeasure.
文摘Due to a number of advantages, blind adaptive multiuser detector has become a research hotspot in recent years. But low convergence rate problem occurs to many blind adaptive algorithms. A new blind adaptive approach to multiuser detection is presented. The simulation results show that by reasonably choosing time varying step size, the proposed detector can not only improve the convergence rate, but also reduce the bit error rate (BER) of the system, and so it can effectively improve the system performance with less computational cost.
基金Supported by the National Basic Research Program of China (Grant No. 2007CB815500)the National High Technology Research and Development Program of China (Grant No. 2007AA12z343)
文摘Multiple Path Interference (MPI) and Multiple Access Interference (MAI) are important factors that affect the performance of Chinese Area Positioning System (CAPS). These problems can be solved by using spreading sequences with ideal properties and multi-user detectors. Chaotic sequences based on Chebyshev map are studied and the satellite communication system model is set up to investigate the application of chaotic sequences for CAPS in this paper. Simulation results show that chaotic sequences have desirable correlation properties and it is easy to generate a large number of chaotic sequences with good security. It has great practical value to apply chaotic sequences to CAPS together with multi-user detecting technology and the system performance can be improved greatly.
文摘Application of Neural Network to signal detection in CDMA multi-user communications Gaussian channel is investigated. This paper is motivated by the fact that, in a multi-user CDMA system. the conventional receiver suffers severe performance degradation as the relative powers of the interfering signals become large(i.e. 'near-far problem'). Furthermore, in many cases, the optimum receiver which alleviates the near-far problem, is too complex to be of practical use. And by viewing this optimum multi-user detector problem in CDMA channel as an optimum nonlinear classification decision problem. we apply the Probabilistic Neural Network algorithm, which has the capacity of arbitrary nonlinear transformation, adaptive learning and tracking to implement this classification decision optimally and adaptively The performance of the Proposes neural detector is evaluated via computer simulations in terms of probability of detection and it is compared with those of the existing neural and conventional detector schemes in a multi-user environment.