期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Blind Image Quality Assessment Based on Wavelet Power Spectrum in Perceptual Domain
1
作者 路朋罗 李永昌 +1 位作者 金龙旭 韩双丽 《Transactions of Tianjin University》 EI CAS 2016年第6期596-602,共7页
Blind image quality assessment(BIQA) can assess the perceptual quality of a distorted image without a prior knowledge of its reference image or distortion type. In this paper, a novel BIQA model is developed in wavele... Blind image quality assessment(BIQA) can assess the perceptual quality of a distorted image without a prior knowledge of its reference image or distortion type. In this paper, a novel BIQA model is developed in wavelet domain. Considering the multi-resolution and band-passing characteristics of discrete wavelet transform(DWT), an improvement over the power spectrum is put forward, i.e., dubbed wavelet power spectrum(WPS)estimation. Then, the concept of directional WPS is applied to simplify the calculation. Moreover, a rotationally symmetric modulation transfer function(MTF) of human visual system(HVS) is integrated as a filter, which makes the metric to be consistent with the human vision perception and more discriminative. Experiments are conducted on the LIVE databases and three other databases, and the results show that the proposed metric is highly correlated with subjective evaluations and it competes well with other state-of-the-art metrics in terms of effectiveness and robustness. 展开更多
关键词 blind image quality assessment human visual system wavelet power spectrum
下载PDF
A multimodal dense convolution network for blind image quality assessment
2
作者 Nandhini CHOCKALINGAM Brindha MURUGAN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第11期1601-1615,共15页
Technological advancements continue to expand the communications industry’s potential.Images,which are an important component in strengthening communication,are widely available.Therefore,image quality assessment(IQA... Technological advancements continue to expand the communications industry’s potential.Images,which are an important component in strengthening communication,are widely available.Therefore,image quality assessment(IQA)is critical in improving content delivered to end users.Convolutional neural networks(CNNs)used in IQA face two common challenges.One issue is that these methods fail to provide the best representation of the image.The other issue is that the models have a large number of parameters,which easily leads to overfitting.To address these issues,the dense convolution network(DSC-Net),a deep learning model with fewer parameters,is proposed for no-reference image quality assessment(NR-IQA).Moreover,it is obvious that the use of multimodal data for deep learning has improved the performance of applications.As a result,multimodal dense convolution network(MDSC-Net)fuses the texture features extracted using the gray-level co-occurrence matrix(GLCM)method and spatial features extracted using DSC-Net and predicts the image quality.The performance of the proposed framework on the benchmark synthetic datasets LIVE,TID2013,and KADID-10k demonstrates that the MDSC-Net approach achieves good performance over state-of-the-art methods for the NR-IQA task. 展开更多
关键词 No-reference image quality assessment(NR-IQA) blind image quality assessment Multimodal dense convolution network(MDSC-Net) Deep learning Visual quality Perceptual quality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部