A novel single-channel blind separation algorithm for permuted motion blurred images is proposed by using blind restoration in this paper. Both the motion direction and the length of the point spread function (PSF) ...A novel single-channel blind separation algorithm for permuted motion blurred images is proposed by using blind restoration in this paper. Both the motion direction and the length of the point spread function (PSF) are estimated by Radon transformation and extrema a detection. Using the estimated blur parameters, the permuted image is restored by performing the L-R blind restoration method. The permutation mixing matrices can be accurately estimated by classifying the ringing effect in the restored image, thereby the source images can be separated. Simulation results show a better separation efficiency for the permuted motion blurred image with various permutation operations. The proposed algorithm indicates a better performance on the robustness against Gaussian noise and lossy JPEG compression.展开更多
Based on anisotropic total variation regularization(ATVR), a nonnegativity and support constraints recursive inverse filtering(NAS-RIF) blind restoration method is proposed to enhance the quality of optical coherence ...Based on anisotropic total variation regularization(ATVR), a nonnegativity and support constraints recursive inverse filtering(NAS-RIF) blind restoration method is proposed to enhance the quality of optical coherence tomography(OCT) image. First, ATVR is introduced into the cost function of NAS-RIF to improve the noise robustness and retain the details in the image.Since the split Bregman iterative is used to optimize the ATVR based cost function, the ATVR based NAS-RIF blind restoration method is then constructed. Furthermore, combined with the geometric nonlinear diffusion filter and the Poisson-distribution-based minimum error thresholding, the ATVR based NAS-RIF blind restoration method is used to realize the blind OCT image restoration. The experimental results demonstrate that the ATVR based NAS-RIF blind restoration method can successfully retain the details in the OCT images. In addition, the signal-to-noise ratio of the blind restored OCT images can be improved, along with the noise robustness.展开更多
The imaging problem of low signal to noise ratio (SNR)echo is very important for ultra-wide band (UWB) through-wall radar. An improved multi-channel blind image restoration algorithm based on sub-space and constra...The imaging problem of low signal to noise ratio (SNR)echo is very important for ultra-wide band (UWB) through-wall radar. An improved multi-channel blind image restoration algorithm based on sub-space and constrained least square (CLS) is presented and applied to UWB radar system to deal with this issue. The high resolution of radar image is equivalent to multi-channel blind image restoration based on the improved model of the through-wall radar echo. And a new cost function is proposed to the multi-channel blind image restoration by considering the concept of sub-space as the limitation of blur identification. The proposed algorithm has all advantages of CLS and sub-space, and converts the image estimation to alternating-minimizing the two cost functions. Experimental results prove that the proposed algorithm is effective at improving the resolution of radar image even at low SNR.展开更多
Computed tomography(CT) blurring caused by point spread function leads to errors in quantification and visualization. In this paper, multichannel blind CT image restoration is proposed to overcome the effect of point ...Computed tomography(CT) blurring caused by point spread function leads to errors in quantification and visualization. In this paper, multichannel blind CT image restoration is proposed to overcome the effect of point spread function. The main advantage from multichannel blind CT image restoration is to exploit the diversity and redundancy of information in different acquisitions. The proposed approach is based on a variable splitting to obtain an equivalent constrained optimization formulation, which is addressed with the alternating direction method of multipliers and simply implemented in the Fourier domain. Numerical experiments illustrate that our method obtains a higher average gain value of at least 1.21 d B in terms of Q metric than the other methods, and it requires only 7 iterations of alternating minimization to obtain a fast convergence.展开更多
Previous deep learning-based super-resolution(SR)methods rely on the assumption that the degradation process is predefined(e.g.,bicubic downsampling).Thus,their performance would suffer from deterioration if the real ...Previous deep learning-based super-resolution(SR)methods rely on the assumption that the degradation process is predefined(e.g.,bicubic downsampling).Thus,their performance would suffer from deterioration if the real degradation is not consistent with the assumption.To deal with real-world scenarios,existing blind SR methods are committed to estimating both the degradation and the super-resolved image with an extra loss or iterative scheme.However,degradation estimation that requires more computation would result in limited SR performance due to the accumulated estimation errors.In this paper,we propose a contrastive regularization built upon contrastive learning to exploit both the information of blurry images and clear images as negative and positive samples,respectively.Contrastive regularization ensures that the restored image is pulled closer to the clear image and pushed far away from the blurry image in the representation space.Furthermore,instead of estimating the degradation,we extract global statistical prior information to capture the character of the distortion.Considering the coupling between the degradation and the low-resolution image,we embed the global prior into the distortion-specific SR network to make our method adaptive to the changes of distortions.We term our distortion-specific network with contrastive regularization as CRDNet.The extensive experiments on synthetic and realworld scenes demonstrate that our lightweight CRDNet surpasses state-of-the-art blind super-resolution approaches.展开更多
To achieve restoration of high frequency information for an undersampled and degraded low-resolution image, a nonlinear and real-time processing method-the radial basis function (RBF) neural network based super-resolu...To achieve restoration of high frequency information for an undersampled and degraded low-resolution image, a nonlinear and real-time processing method-the radial basis function (RBF) neural network based super-resolution method of restoration is proposed. The RBF network configuration and processing method is suitable for a high resolution restoration from an undersampled low-resolution image. The soft-competition learning scheme based on the k-means algorithm is used, and can achieve higher mapping approximation accuracy without increase in the network size. Experiments showed that the proposed algorithm can achieve a super-resolution restored image from an undersampled and degraded low-resolution image, and requires a shorter training time when compared with the multiplayer perception (MLP) network.展开更多
Deep convolutional neural networks,particularly large models with large kernels(3x3 or more),have achieved significant progress in single image super-resolution(SISR)tasks.However,the heavy computational footprint of ...Deep convolutional neural networks,particularly large models with large kernels(3x3 or more),have achieved significant progress in single image super-resolution(SISR)tasks.However,the heavy computational footprint of such models prevents their de-ployment in real-time,resource-constrained environments.Conversely,1×1 convolutions have substantial computational efficiency,but struggle with aggregating local spatial representations,which is an essential capability for SISR models.In response to this dichotomy,we propose to harmonize the merits of both 3x3 and 1×1 kernels,and exploit their great potential for lightweight SISR tasks.Specific-ally,we propose a simple yet effective fully 1×1 convolutional network,named shift-Conv-based network(SCNet).By incorporating a parameter-free spatial-shift operation,the fully 1×1 convolutional network is equipped with a powerful representation capability and impressive computational efficiency.Extensive experiments demonstrate that SCNets,despite their fully 1×1 convolutional structure,consistently match or even surpass the performance of existing lightweight SR models that employ regular convolutions.The code and pretrained models can be found at .展开更多
Vegetation is crucial for wetland ecosystems.Human activities and climate changes are increasingly threatening wetland ecosystems.Combining satellite images and deep learning for classifying marsh vegetation communiti...Vegetation is crucial for wetland ecosystems.Human activities and climate changes are increasingly threatening wetland ecosystems.Combining satellite images and deep learning for classifying marsh vegetation communities has faced great challenges because of its coarse spatial resolution and limited spectral bands.This study aimed to propose a method to classify marsh vegetation using multi-resolution multispectral and hyperspectral images,combining super-resolution techniques and a novel self-constructing graph attention neural network(SGA-Net)algorithm.The SGA-Net algorithm includes a decoding layer(SCE-Net)to preciselyfine marsh vegetation classification in Honghe National Nature Reserve,Northeast China.The results indicated that the hyperspectral reconstruction images based on the super-resolution convolutional neural network(SRCNN)obtained higher accuracy with a peak signal-to-noise ratio(PSNR)of 28.87 and structural similarity(SSIM)of 0.76 in spatial quality and root mean squared error(RMSE)of 0.11 and R^(2) of 0.63 in spectral quality.The improvement of classification accuracy(MIoU)by enhanced super-resolution generative adversarial network(ESRGAN)(6.19%)was greater than that of SRCNN(4.33%)and super-resolution generative adversarial network(SRGAN)(3.64%).In most classification schemes,the SGA-Net outperformed DeepLabV3+and SegFormer algorithms for marsh vegetation and achieved the highest F1-score(78.47%).This study demonstrated that collaborative use of super-resolution reconstruction and deep learning is an effective approach for marsh vegetation mapping.展开更多
In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic p...In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio (PSNR) and Laplacian sum (LS) value than the others. The research results have a certain application values for actual AO image restoration.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.60872114)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Graduate Student Innovation Foundation of Shanghai University (Grant No.SHUCX101086)
文摘A novel single-channel blind separation algorithm for permuted motion blurred images is proposed by using blind restoration in this paper. Both the motion direction and the length of the point spread function (PSF) are estimated by Radon transformation and extrema a detection. Using the estimated blur parameters, the permuted image is restored by performing the L-R blind restoration method. The permutation mixing matrices can be accurately estimated by classifying the ringing effect in the restored image, thereby the source images can be separated. Simulation results show a better separation efficiency for the permuted motion blurred image with various permutation operations. The proposed algorithm indicates a better performance on the robustness against Gaussian noise and lossy JPEG compression.
基金Supported by National Key Research and Development Program of China(2016YFF0201005)。
文摘Based on anisotropic total variation regularization(ATVR), a nonnegativity and support constraints recursive inverse filtering(NAS-RIF) blind restoration method is proposed to enhance the quality of optical coherence tomography(OCT) image. First, ATVR is introduced into the cost function of NAS-RIF to improve the noise robustness and retain the details in the image.Since the split Bregman iterative is used to optimize the ATVR based cost function, the ATVR based NAS-RIF blind restoration method is then constructed. Furthermore, combined with the geometric nonlinear diffusion filter and the Poisson-distribution-based minimum error thresholding, the ATVR based NAS-RIF blind restoration method is used to realize the blind OCT image restoration. The experimental results demonstrate that the ATVR based NAS-RIF blind restoration method can successfully retain the details in the OCT images. In addition, the signal-to-noise ratio of the blind restored OCT images can be improved, along with the noise robustness.
基金Sponsored by the National Natural Science Foundation of China(60472110)
文摘The imaging problem of low signal to noise ratio (SNR)echo is very important for ultra-wide band (UWB) through-wall radar. An improved multi-channel blind image restoration algorithm based on sub-space and constrained least square (CLS) is presented and applied to UWB radar system to deal with this issue. The high resolution of radar image is equivalent to multi-channel blind image restoration based on the improved model of the through-wall radar echo. And a new cost function is proposed to the multi-channel blind image restoration by considering the concept of sub-space as the limitation of blur identification. The proposed algorithm has all advantages of CLS and sub-space, and converts the image estimation to alternating-minimizing the two cost functions. Experimental results prove that the proposed algorithm is effective at improving the resolution of radar image even at low SNR.
基金Supported by the National Natural Science Foundaton of China(No.61340034)China Postdoctoral Science Foundation(No.2013M530873)the Research Program of Application Foundation and Advanced Technology of Tianjin(No.13JCYBJC15600)
文摘Computed tomography(CT) blurring caused by point spread function leads to errors in quantification and visualization. In this paper, multichannel blind CT image restoration is proposed to overcome the effect of point spread function. The main advantage from multichannel blind CT image restoration is to exploit the diversity and redundancy of information in different acquisitions. The proposed approach is based on a variable splitting to obtain an equivalent constrained optimization formulation, which is addressed with the alternating direction method of multipliers and simply implemented in the Fourier domain. Numerical experiments illustrate that our method obtains a higher average gain value of at least 1.21 d B in terms of Q metric than the other methods, and it requires only 7 iterations of alternating minimization to obtain a fast convergence.
基金supported by the National Natural Science Foundation of China(61971165)the Key Research and Development Program of Hubei Province(2020BAB113)。
文摘Previous deep learning-based super-resolution(SR)methods rely on the assumption that the degradation process is predefined(e.g.,bicubic downsampling).Thus,their performance would suffer from deterioration if the real degradation is not consistent with the assumption.To deal with real-world scenarios,existing blind SR methods are committed to estimating both the degradation and the super-resolved image with an extra loss or iterative scheme.However,degradation estimation that requires more computation would result in limited SR performance due to the accumulated estimation errors.In this paper,we propose a contrastive regularization built upon contrastive learning to exploit both the information of blurry images and clear images as negative and positive samples,respectively.Contrastive regularization ensures that the restored image is pulled closer to the clear image and pushed far away from the blurry image in the representation space.Furthermore,instead of estimating the degradation,we extract global statistical prior information to capture the character of the distortion.Considering the coupling between the degradation and the low-resolution image,we embed the global prior into the distortion-specific SR network to make our method adaptive to the changes of distortions.We term our distortion-specific network with contrastive regularization as CRDNet.The extensive experiments on synthetic and realworld scenes demonstrate that our lightweight CRDNet surpasses state-of-the-art blind super-resolution approaches.
文摘To achieve restoration of high frequency information for an undersampled and degraded low-resolution image, a nonlinear and real-time processing method-the radial basis function (RBF) neural network based super-resolution method of restoration is proposed. The RBF network configuration and processing method is suitable for a high resolution restoration from an undersampled low-resolution image. The soft-competition learning scheme based on the k-means algorithm is used, and can achieve higher mapping approximation accuracy without increase in the network size. Experiments showed that the proposed algorithm can achieve a super-resolution restored image from an undersampled and degraded low-resolution image, and requires a shorter training time when compared with the multiplayer perception (MLP) network.
基金National Natural Science Foundation of China,China(Nos.U23B2009 and 92270116)Fundamental Research Funds for the Central Universities,China.
文摘Deep convolutional neural networks,particularly large models with large kernels(3x3 or more),have achieved significant progress in single image super-resolution(SISR)tasks.However,the heavy computational footprint of such models prevents their de-ployment in real-time,resource-constrained environments.Conversely,1×1 convolutions have substantial computational efficiency,but struggle with aggregating local spatial representations,which is an essential capability for SISR models.In response to this dichotomy,we propose to harmonize the merits of both 3x3 and 1×1 kernels,and exploit their great potential for lightweight SISR tasks.Specific-ally,we propose a simple yet effective fully 1×1 convolutional network,named shift-Conv-based network(SCNet).By incorporating a parameter-free spatial-shift operation,the fully 1×1 convolutional network is equipped with a powerful representation capability and impressive computational efficiency.Extensive experiments demonstrate that SCNets,despite their fully 1×1 convolutional structure,consistently match or even surpass the performance of existing lightweight SR models that employ regular convolutions.The code and pretrained models can be found at .
基金supported by National Natural Science Foundation of China:[Grant Number 21976043,42122009]Guangxi Science&Technology Program:[Grant Number GuikeAD20159037]+1 种基金‘Ba Gui Scholars’program of the provincial government of Guangxi,and the Guilin University of Technology Foundation:[Grant Number GUTQDJJ2017096]Innovation Project of Guangxi Graduate Education:[Grant Number YCSW2022328].
文摘Vegetation is crucial for wetland ecosystems.Human activities and climate changes are increasingly threatening wetland ecosystems.Combining satellite images and deep learning for classifying marsh vegetation communities has faced great challenges because of its coarse spatial resolution and limited spectral bands.This study aimed to propose a method to classify marsh vegetation using multi-resolution multispectral and hyperspectral images,combining super-resolution techniques and a novel self-constructing graph attention neural network(SGA-Net)algorithm.The SGA-Net algorithm includes a decoding layer(SCE-Net)to preciselyfine marsh vegetation classification in Honghe National Nature Reserve,Northeast China.The results indicated that the hyperspectral reconstruction images based on the super-resolution convolutional neural network(SRCNN)obtained higher accuracy with a peak signal-to-noise ratio(PSNR)of 28.87 and structural similarity(SSIM)of 0.76 in spatial quality and root mean squared error(RMSE)of 0.11 and R^(2) of 0.63 in spectral quality.The improvement of classification accuracy(MIoU)by enhanced super-resolution generative adversarial network(ESRGAN)(6.19%)was greater than that of SRCNN(4.33%)and super-resolution generative adversarial network(SRGAN)(3.64%).In most classification schemes,the SGA-Net outperformed DeepLabV3+and SegFormer algorithms for marsh vegetation and achieved the highest F1-score(78.47%).This study demonstrated that collaborative use of super-resolution reconstruction and deep learning is an effective approach for marsh vegetation mapping.
基金This research is supported by the State Scholarship Fund of China (No. 201508220093), the National Science Foundation of China (No. 61402193), the Scientific and Technological Research Project of the Department of Education in Jilin Province (No. JJKH20170575KJ, and No. 2014142), and the Postdoctoral sustentation Fund of Jilin Province, the Department of Science and Technology of Jilin Province (No. 20160418080).
文摘In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio (PSNR) and Laplacian sum (LS) value than the others. The research results have a certain application values for actual AO image restoration.