Doppler blind zone (DBZ) has a bad influence on the airborne early warning radar, although it has good detection performance for low altitude targets with pulse Doppler (PD) technology. In target tracking, the bli...Doppler blind zone (DBZ) has a bad influence on the airborne early warning radar, although it has good detection performance for low altitude targets with pulse Doppler (PD) technology. In target tracking, the blind zone can cause target tracking breakage easily. In order to solve this problem, a parallel particle filter (PF) algorithm based on multi-hypothesis motion models (MHMMs) is proposed. The algorithm produces multiple possible target motion models according to the DBZ constraint. Particles are updated with the constraint in each motion model. Once the first measurement from the target which reappears from DBZ falls into the particle cloud formed by any model, the measurementtrack association succeeds and track breakage is avoided. The simulation results show that on the condition of different DBZ ranges, a high association ratio can be got for targets with different maneuverability levels, which accordingly improves the tracking quality.展开更多
Current methods of order tracking, such as synchronous resampling, Gabor filtering, and Vold-Kalman filtering have undesirable traits. Each method has two or more of the following deficiencies: requires measurement or...Current methods of order tracking, such as synchronous resampling, Gabor filtering, and Vold-Kalman filtering have undesirable traits. Each method has two or more of the following deficiencies: requires measurement or estimate of rotational speed over time, failure to isolate the contribution of crossing orders in the vicinity of the crossing time, large computational expense, end effects. In this work a new approach to the order tracking problem is taken. The Second Order Blind Identification (SOBI) algorithm is applied to synthesized data. The technique is shown to be very successful at isolating crossing orders and circumvents all of the above deficiencies. The method has its own restric-tions: multiple sensors are required and sensors must be mounted on a structure that responds quasi-statically to exci-tation of the rotational system.展开更多
基金supported by the Academy Innovation Fund Project (2013QNCX0101)
文摘Doppler blind zone (DBZ) has a bad influence on the airborne early warning radar, although it has good detection performance for low altitude targets with pulse Doppler (PD) technology. In target tracking, the blind zone can cause target tracking breakage easily. In order to solve this problem, a parallel particle filter (PF) algorithm based on multi-hypothesis motion models (MHMMs) is proposed. The algorithm produces multiple possible target motion models according to the DBZ constraint. Particles are updated with the constraint in each motion model. Once the first measurement from the target which reappears from DBZ falls into the particle cloud formed by any model, the measurementtrack association succeeds and track breakage is avoided. The simulation results show that on the condition of different DBZ ranges, a high association ratio can be got for targets with different maneuverability levels, which accordingly improves the tracking quality.
文摘Current methods of order tracking, such as synchronous resampling, Gabor filtering, and Vold-Kalman filtering have undesirable traits. Each method has two or more of the following deficiencies: requires measurement or estimate of rotational speed over time, failure to isolate the contribution of crossing orders in the vicinity of the crossing time, large computational expense, end effects. In this work a new approach to the order tracking problem is taken. The Second Order Blind Identification (SOBI) algorithm is applied to synthesized data. The technique is shown to be very successful at isolating crossing orders and circumvents all of the above deficiencies. The method has its own restric-tions: multiple sensors are required and sensors must be mounted on a structure that responds quasi-statically to exci-tation of the rotational system.