Central Asian Orogenic Belt(CAOB) is one of the largest accretionary orogenic belts in the world. The eastern segment of CAOB is dominated by Paleozoic Paleo Asian Ocean tectonic regime, Mesozoic Paleo-Pacific tectoni...Central Asian Orogenic Belt(CAOB) is one of the largest accretionary orogenic belts in the world. The eastern segment of CAOB is dominated by Paleozoic Paleo Asian Ocean tectonic regime, Mesozoic Paleo-Pacific tectonic regime and Mongolian-Okhotsk tectonic regime. The Songliao and Jiamusi blocks are located in the easternmost part of the CAOB and are the key region to solve the problem about overprinting processes of multiple tectonic regimes. It is generally believed that the Mudanjiang Ocean between the two blocks was finally closed in the Mesozoic, but the Paleozoic magmatism also developed along the Mudanjiang suture zone, while on both sides of the suture zone, there were comparable Paleozoic strata, indicating that the two blocks had converged during the Paleozoic, and the evolution history of the two blocks in the Late Paleozoic remains controversial. The Carboniferous-Permian terrestrial strata mainly developed in Binxian, Wuchang and Tieli on Songliao Block, Baoqing and Mishan on Jiamusi Block. Samples from the Songliao and Jiamusi blocks in the Late Carboniferous-Early Permian and Late Permian are collected for comparative analysis. The LAICP-MS zircon U-Pb dating results show that the maximum depositional age of Middle Permian Tumenling Formation and Late Permian Hongshan Formation in Songliao Block is ~260 Ma, while that of Tatouhe Formation and Carboniferous strata in Jiamusi Block are ~290 Ma and ~300 Ma, respectively, which supports the previous stratigraphic division scheme. The age peaks of ~290-300 Ma, ~400 Ma, ~500 Ma appeared in the Late Carboniferous to Early Permian strata of Jiamusi Block and the Middle Permian strata of Songliao Block. The age peak of ~500 Ma in the Middle Permian strata of Songliao Block may come from the Cambrian basement, Mashan Complex, of Jiamusi Block, while the age peaks of ~420-440 Ma in the Carboniferous strata of Jiamusi Block may come from the Silurian magmatic arc in Zhangguangcai Range in the eastern margin of Songliao Block, reflects the history that they had been potential sources of each other, indicating that they may have combined in the Paleozoic. The Hongshan Formation of Songliao Block in the Late Permian lacks the age peak of ~500 Ma, which indicate that Jiamusi Block was not the provenance of Songliao Block in the Late Permian, that is, there was a palaeogeographic isolation between the two blocks. Combined with the ~210 Ma bimodal volcanic rocks developed along the Mudanjiang suture zone reported previously, we believe that the oceanic basin between the Songliao and Jiamusi blocks should have been connected in Late Permian and reopened during Late Permian to Late Triassic.展开更多
This study describes a previously unidentified Neoproterozoic mafic dyke emplaced in the northern flank of the Langshan Tectonic Belt. This dyke intruded into the micaquartz schist of the Zhaertaishan Group, and yield...This study describes a previously unidentified Neoproterozoic mafic dyke emplaced in the northern flank of the Langshan Tectonic Belt. This dyke intruded into the micaquartz schist of the Zhaertaishan Group, and yielded an age of 908 ± 8 Ma. The youngest U-Pb ages of micaquartz schist from the Zhaertaishan Group in the Langshan area were 1118 ± 33 Ma,1187 ± 3 Ma and 1189 ± 39 Ma,suggesting that the depositional age of the protolith of the schist was between 908 ± 8 Ma and 1118 ± 33 Ma. In addition, 436 U-Pb age data and 155 Lu-Hf isotopic data from six samples in the Langshan Tectonic Belt and one Permian greywacke from the Wuhai area show distinct differences between the northern and southern flanks of the Main Langshan area. The U-Pb ages of the northern flank are primarily Meso-Neoproterozoic; similar ages have not been identified in the southern flank to date.Moreover, two-stage Hf model ages of the northern flank feature three age peaks at ~900 Ma,~1700 Ma and ~2600 Ma; this differs from Hf model ages of the southern flank, which feature one strong age peak at ~2700 Ma. These results suggest that the northern and southern flanks of the Main Langshan area have different geochronologic characteristics and should be divided further. Based on the U-Pb ages and Hf model ages, the northern and southern flanks of the Main Langshan area are named the North and South Langshan Tectonic Belts. Comparison of the U-Pb age and two-stage Hf model age distributions from the North Langshan Tectonic Belt, South Langshan Tectonic Belt, Alxa Block and the North China Craton(NCC) reveal that the North Langshan Tectonic Belt is similar to the Alxa Block and that the South Langshan Tectonic Belt is similar to the NCC. In addition, the zircon U-Pb age of 860 ±7 Ma commonly observed in the Alxa Block was detected in the Permian greywacke from the Wuhai area of the NCC, which suggests that the amalgamation of the North and South Langshan Tectonic belts(i.e.,the amalgamation of the Alxa Block and the NCC), occurred between Devonian and late Permian.展开更多
In this study, zircon U-Pb ages, geochemical and Lu-Hf isotopic data are presented for the newly identified volcanic rocks which were considered as Bainaimiao group in Bainaimiao Arc Belt(BAB), Inner Mongolia, which c...In this study, zircon U-Pb ages, geochemical and Lu-Hf isotopic data are presented for the newly identified volcanic rocks which were considered as Bainaimiao group in Bainaimiao Arc Belt(BAB), Inner Mongolia, which could provide important constraints on the evolution of the northern part of North China Block(NCB) and BAB. Basalt to basaltic andesite and andesite to dacite were collected from two sections, which showed eruption ages of 278.2±4.1 Ma and 258.3±3.0 Ma respectively. All samples are characterized by high abundances in Al2O3, LREEs, and LILEs, but depleted in HFSEs. Together with high Mg# ratios and low K/tholeiite to calc-alkaline series, these features indicated that basalt to andesite was likely derived from relatively low degree partial melting of the subduction-fluid related mantle in the spinel phase. And dacite was mainly from the partial melting of crust, then affected by mantle. All samples barely went through fractional crystallization process with the slight Eu anomaly. Compared with the contemporary basalt in NCB, rocks in BAB have a complex composition of zircon and a more positive εHf(t) value(-6.6-6.4), indicating that they had different magma sources of rocks. Though with different basements, NCB and BAB have become an integrated whole before 278 Ma. Therefore, it could be concluded that NCB and BAB belonged to the active continental margin and the PAO had not closed yet until late Permian and then it disappeared gradually and the CAOB developed into a condition of syn-post collision.展开更多
The Songpan Garzê Fold Belt records Triassic shortening of a relict Palaeo\|Tethyan basin during assembly and accretion of the Cimmerian continental chain to Laurasia’s southern margin. Enclosed by palaeo\|Laura...The Songpan Garzê Fold Belt records Triassic shortening of a relict Palaeo\|Tethyan basin during assembly and accretion of the Cimmerian continental chain to Laurasia’s southern margin. Enclosed by palaeo\|Laurasia and the Cimmerian fragments of Qiangtang (North Tibet) and Yangtze (South China), the Songpan Garzê Fold Belt was shortened by more than 50% during the Indosinian Orogeny c.200Ma. [BW(D(S,,)G2*7][BHDWG2*7,WK*2,WK5,WK15*2,WK17*2,WK*2W] 2000,7(增刊) 地 学 前 缘 [FK(K+6mm。17*2] 4\ Major Topic:Geology of the Inner Tibetan Plateau [BW(S(S,,)G2*7][BHDWG2*7,WK*2,WK17*2,WK15*2,WK5,WK*2W] [FK(K+6mm。17*2] 4\ Major Topic:Geology of the Inner Tibetan Plateau 地 学 前 缘 2000,7(增刊)South\|directed Indosinian compression decolléd onlapping basin sediments from the Yangtze Block’s passive margin—reactivating the margin’s tiered geometry and partitioning strain into margin\|normal and margin\|parallel structures on a large scale. Margin\|normal transport of the allochthonous sedimentary pile was accommodated by southeast\|directed nappe propagation in the Longmen Mountains Thrust—Nappe Belt, whilst conjugate, margin\|parallel (southwest\|directed) transport was accommodated by a flat\|lying detachment at the base of the sedimentary pile.The later is characteristic of deformation of the greater Songpan Garzê Fold Belt.展开更多
Jinshajiang melange belt locates between Jianda\|Weixi island arc and Zhongzha massif. The melange belt and island arc makes up Jinshajiang plate junction. Although subsequent tectonic movements had complexed the stru...Jinshajiang melange belt locates between Jianda\|Weixi island arc and Zhongzha massif. The melange belt and island arc makes up Jinshajiang plate junction. Although subsequent tectonic movements had complexed the structural form of Jinshajiang melange belt, there are still a lots of structural block remained which carried amount of information about the tectonic evolution of the belt. Recent researches have identified several kinds of rock association in the structural blocks.(1) Ophiolite:The ophiolite consists of serpentinization ultramafite, ultramafic cumulus crystal rock (pyroxenite, dunite), gabbro, diabase cluster, ocean\|ridge type basalt, plagiogranite and radiolarian silicalite. The isotopic age shows that the ultramafite and basalt formed during Upper Carboniferous and Lower Permian. The silicalite is high in radiolaria of Lower Permian.(2) Rock association of oceanic island\|arc:The liptocoenosis of oceanic island\|arc scatter in melange belt, it mainly consists of sandy slate, pyroclastic rock, silicalite, basalt and andesite. A part of volcanic rock belongs to calc\|alkaline volcanic suite and the other is tholeiite. The petrochemistry, REE and microelement of volcanic rock have the feature of the rock in ocean\|island arc. The isotopic age of basalt shows that the ocean\|island arc formed in Lower Permian.展开更多
The western margin of Yangtze block and southwestern Sanjiang region absorbed much attention from geologists. It has been proved that there occurred a series of plate subduction, collision, assembly, rifting and break...The western margin of Yangtze block and southwestern Sanjiang region absorbed much attention from geologists. It has been proved that there occurred a series of plate subduction, collision, assembly, rifting and breakup processes between them since Palaeozoic and the tectonic evolutionary relationship between them is clear. But in Proterozoic this kind of links between them became unclear. Did they undergo the assembly and breakup processes of the Rodinia super continent? This paper will take a primary discussion on this question on the basis of basement component, structure characteristics and magmatic activities.1\ Basement features\;(1) In western margin of Yangtze block its basement is composed of crystalline basement and folded basement, a so\|called double\|layer structure. The crystalline basement is made up of Kangding group, Pudeng Formation and Dibadu Formation, among them Kangding group is a representative and composed mainly of migmatite, compositing gneiss, hornblende schist and granulitite. The isotopic age of crystalline basement is older than 1900Ma, so its geological time is late Archaean to early Proterozoic. The folded basement is composed of Dahongshan group, Hekou group, Kunyang group, Huili group and Yanbian group. Their rock associations are made up mainly of spilite\|keratophyre formation, carbonate formation, clastic rock and clastic rock formation with some basic volcanic rocks. The folded basement is assigned to be early and middle Proterozoic (1000~1700M a).展开更多
基金supported by the National Key R&D Plan of China (Grant No. 2017YFC0601300–01)973 Program (Grant 2013CB429802)NSFC (Grant 41302175, 41502207)
文摘Central Asian Orogenic Belt(CAOB) is one of the largest accretionary orogenic belts in the world. The eastern segment of CAOB is dominated by Paleozoic Paleo Asian Ocean tectonic regime, Mesozoic Paleo-Pacific tectonic regime and Mongolian-Okhotsk tectonic regime. The Songliao and Jiamusi blocks are located in the easternmost part of the CAOB and are the key region to solve the problem about overprinting processes of multiple tectonic regimes. It is generally believed that the Mudanjiang Ocean between the two blocks was finally closed in the Mesozoic, but the Paleozoic magmatism also developed along the Mudanjiang suture zone, while on both sides of the suture zone, there were comparable Paleozoic strata, indicating that the two blocks had converged during the Paleozoic, and the evolution history of the two blocks in the Late Paleozoic remains controversial. The Carboniferous-Permian terrestrial strata mainly developed in Binxian, Wuchang and Tieli on Songliao Block, Baoqing and Mishan on Jiamusi Block. Samples from the Songliao and Jiamusi blocks in the Late Carboniferous-Early Permian and Late Permian are collected for comparative analysis. The LAICP-MS zircon U-Pb dating results show that the maximum depositional age of Middle Permian Tumenling Formation and Late Permian Hongshan Formation in Songliao Block is ~260 Ma, while that of Tatouhe Formation and Carboniferous strata in Jiamusi Block are ~290 Ma and ~300 Ma, respectively, which supports the previous stratigraphic division scheme. The age peaks of ~290-300 Ma, ~400 Ma, ~500 Ma appeared in the Late Carboniferous to Early Permian strata of Jiamusi Block and the Middle Permian strata of Songliao Block. The age peak of ~500 Ma in the Middle Permian strata of Songliao Block may come from the Cambrian basement, Mashan Complex, of Jiamusi Block, while the age peaks of ~420-440 Ma in the Carboniferous strata of Jiamusi Block may come from the Silurian magmatic arc in Zhangguangcai Range in the eastern margin of Songliao Block, reflects the history that they had been potential sources of each other, indicating that they may have combined in the Paleozoic. The Hongshan Formation of Songliao Block in the Late Permian lacks the age peak of ~500 Ma, which indicate that Jiamusi Block was not the provenance of Songliao Block in the Late Permian, that is, there was a palaeogeographic isolation between the two blocks. Combined with the ~210 Ma bimodal volcanic rocks developed along the Mudanjiang suture zone reported previously, we believe that the oceanic basin between the Songliao and Jiamusi blocks should have been connected in Late Permian and reopened during Late Permian to Late Triassic.
基金supported by the National Natural Science Foundation of China (Grant No. 41473015)a research grant from the Institute of Crustal Dynamics, CEA (ZDJ2014-02+2 种基金 ZDJ2017-05)the Tutor Foundation of the China University of Geosciences (Beijing) (Grant No. 53200859400)the China Geological Survey Projects (Grant Nos. 12120114041401 and 12120113015700)
文摘This study describes a previously unidentified Neoproterozoic mafic dyke emplaced in the northern flank of the Langshan Tectonic Belt. This dyke intruded into the micaquartz schist of the Zhaertaishan Group, and yielded an age of 908 ± 8 Ma. The youngest U-Pb ages of micaquartz schist from the Zhaertaishan Group in the Langshan area were 1118 ± 33 Ma,1187 ± 3 Ma and 1189 ± 39 Ma,suggesting that the depositional age of the protolith of the schist was between 908 ± 8 Ma and 1118 ± 33 Ma. In addition, 436 U-Pb age data and 155 Lu-Hf isotopic data from six samples in the Langshan Tectonic Belt and one Permian greywacke from the Wuhai area show distinct differences between the northern and southern flanks of the Main Langshan area. The U-Pb ages of the northern flank are primarily Meso-Neoproterozoic; similar ages have not been identified in the southern flank to date.Moreover, two-stage Hf model ages of the northern flank feature three age peaks at ~900 Ma,~1700 Ma and ~2600 Ma; this differs from Hf model ages of the southern flank, which feature one strong age peak at ~2700 Ma. These results suggest that the northern and southern flanks of the Main Langshan area have different geochronologic characteristics and should be divided further. Based on the U-Pb ages and Hf model ages, the northern and southern flanks of the Main Langshan area are named the North and South Langshan Tectonic Belts. Comparison of the U-Pb age and two-stage Hf model age distributions from the North Langshan Tectonic Belt, South Langshan Tectonic Belt, Alxa Block and the North China Craton(NCC) reveal that the North Langshan Tectonic Belt is similar to the Alxa Block and that the South Langshan Tectonic Belt is similar to the NCC. In addition, the zircon U-Pb age of 860 ±7 Ma commonly observed in the Alxa Block was detected in the Permian greywacke from the Wuhai area of the NCC, which suggests that the amalgamation of the North and South Langshan Tectonic belts(i.e.,the amalgamation of the Alxa Block and the NCC), occurred between Devonian and late Permian.
基金supported by the National Natural Science Foundation of China (41872203, 41872194)the China Geological Survey Project (DD2016041–16,DD20190038–2)
文摘In this study, zircon U-Pb ages, geochemical and Lu-Hf isotopic data are presented for the newly identified volcanic rocks which were considered as Bainaimiao group in Bainaimiao Arc Belt(BAB), Inner Mongolia, which could provide important constraints on the evolution of the northern part of North China Block(NCB) and BAB. Basalt to basaltic andesite and andesite to dacite were collected from two sections, which showed eruption ages of 278.2±4.1 Ma and 258.3±3.0 Ma respectively. All samples are characterized by high abundances in Al2O3, LREEs, and LILEs, but depleted in HFSEs. Together with high Mg# ratios and low K/tholeiite to calc-alkaline series, these features indicated that basalt to andesite was likely derived from relatively low degree partial melting of the subduction-fluid related mantle in the spinel phase. And dacite was mainly from the partial melting of crust, then affected by mantle. All samples barely went through fractional crystallization process with the slight Eu anomaly. Compared with the contemporary basalt in NCB, rocks in BAB have a complex composition of zircon and a more positive εHf(t) value(-6.6-6.4), indicating that they had different magma sources of rocks. Though with different basements, NCB and BAB have become an integrated whole before 278 Ma. Therefore, it could be concluded that NCB and BAB belonged to the active continental margin and the PAO had not closed yet until late Permian and then it disappeared gradually and the CAOB developed into a condition of syn-post collision.
文摘The Songpan Garzê Fold Belt records Triassic shortening of a relict Palaeo\|Tethyan basin during assembly and accretion of the Cimmerian continental chain to Laurasia’s southern margin. Enclosed by palaeo\|Laurasia and the Cimmerian fragments of Qiangtang (North Tibet) and Yangtze (South China), the Songpan Garzê Fold Belt was shortened by more than 50% during the Indosinian Orogeny c.200Ma. [BW(D(S,,)G2*7][BHDWG2*7,WK*2,WK5,WK15*2,WK17*2,WK*2W] 2000,7(增刊) 地 学 前 缘 [FK(K+6mm。17*2] 4\ Major Topic:Geology of the Inner Tibetan Plateau [BW(S(S,,)G2*7][BHDWG2*7,WK*2,WK17*2,WK15*2,WK5,WK*2W] [FK(K+6mm。17*2] 4\ Major Topic:Geology of the Inner Tibetan Plateau 地 学 前 缘 2000,7(增刊)South\|directed Indosinian compression decolléd onlapping basin sediments from the Yangtze Block’s passive margin—reactivating the margin’s tiered geometry and partitioning strain into margin\|normal and margin\|parallel structures on a large scale. Margin\|normal transport of the allochthonous sedimentary pile was accommodated by southeast\|directed nappe propagation in the Longmen Mountains Thrust—Nappe Belt, whilst conjugate, margin\|parallel (southwest\|directed) transport was accommodated by a flat\|lying detachment at the base of the sedimentary pile.The later is characteristic of deformation of the greater Songpan Garzê Fold Belt.
文摘Jinshajiang melange belt locates between Jianda\|Weixi island arc and Zhongzha massif. The melange belt and island arc makes up Jinshajiang plate junction. Although subsequent tectonic movements had complexed the structural form of Jinshajiang melange belt, there are still a lots of structural block remained which carried amount of information about the tectonic evolution of the belt. Recent researches have identified several kinds of rock association in the structural blocks.(1) Ophiolite:The ophiolite consists of serpentinization ultramafite, ultramafic cumulus crystal rock (pyroxenite, dunite), gabbro, diabase cluster, ocean\|ridge type basalt, plagiogranite and radiolarian silicalite. The isotopic age shows that the ultramafite and basalt formed during Upper Carboniferous and Lower Permian. The silicalite is high in radiolaria of Lower Permian.(2) Rock association of oceanic island\|arc:The liptocoenosis of oceanic island\|arc scatter in melange belt, it mainly consists of sandy slate, pyroclastic rock, silicalite, basalt and andesite. A part of volcanic rock belongs to calc\|alkaline volcanic suite and the other is tholeiite. The petrochemistry, REE and microelement of volcanic rock have the feature of the rock in ocean\|island arc. The isotopic age of basalt shows that the ocean\|island arc formed in Lower Permian.
文摘The western margin of Yangtze block and southwestern Sanjiang region absorbed much attention from geologists. It has been proved that there occurred a series of plate subduction, collision, assembly, rifting and breakup processes between them since Palaeozoic and the tectonic evolutionary relationship between them is clear. But in Proterozoic this kind of links between them became unclear. Did they undergo the assembly and breakup processes of the Rodinia super continent? This paper will take a primary discussion on this question on the basis of basement component, structure characteristics and magmatic activities.1\ Basement features\;(1) In western margin of Yangtze block its basement is composed of crystalline basement and folded basement, a so\|called double\|layer structure. The crystalline basement is made up of Kangding group, Pudeng Formation and Dibadu Formation, among them Kangding group is a representative and composed mainly of migmatite, compositing gneiss, hornblende schist and granulitite. The isotopic age of crystalline basement is older than 1900Ma, so its geological time is late Archaean to early Proterozoic. The folded basement is composed of Dahongshan group, Hekou group, Kunyang group, Huili group and Yanbian group. Their rock associations are made up mainly of spilite\|keratophyre formation, carbonate formation, clastic rock and clastic rock formation with some basic volcanic rocks. The folded basement is assigned to be early and middle Proterozoic (1000~1700M a).