期刊文献+
共找到260篇文章
< 1 2 13 >
每页显示 20 50 100
Adaptive block greedy algorithms for receiving multi-narrowband signal in compressive sensing radar reconnaissance receiver
1
作者 ZHANG Chaozhu XU Hongyi JIANG Haiqing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1158-1169,共12页
This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, ... This paper extends the application of compressive sensing(CS) to the radar reconnaissance receiver for receiving the multi-narrowband signal. By combining the concept of the block sparsity, the self-adaption methods, the binary tree search,and the residual monitoring mechanism, two adaptive block greedy algorithms are proposed to achieve a high probability adaptive reconstruction. The use of the block sparsity can greatly improve the efficiency of the support selection and reduce the lower boundary of the sub-sampling rate. Furthermore, the addition of binary tree search and monitoring mechanism with two different supports self-adaption methods overcome the instability caused by the fixed block length while optimizing the recovery of the unknown signal.The simulations and analysis of the adaptive reconstruction ability and theoretical computational complexity are given. Also, we verify the feasibility and effectiveness of the two algorithms by the experiments of receiving multi-narrowband signals on an analogto-information converter(AIC). Finally, an optimum reconstruction characteristic of two algorithms is found to facilitate efficient reception in practical applications. 展开更多
关键词 compressive sensing(CS) adaptive greedy algorithm block sparsity analog-to-information convertor(AIC) multinarrowband signal
下载PDF
Block Compressed Sensing Image Reconstruction Based on SL0 Algorithm 被引量:1
2
作者 Juan Zhao Xia Bai Jieqiong Xiao 《Journal of Beijing Institute of Technology》 EI CAS 2017年第3期357-366,共10页
By applying smoothed l0norm(SL0)algorithm,a block compressive sensing(BCS)algorithm called BCS-SL0 is proposed,which deploys SL0 and smoothing filter for image reconstruction.Furthermore,BCS-ReSL0 algorithm is dev... By applying smoothed l0norm(SL0)algorithm,a block compressive sensing(BCS)algorithm called BCS-SL0 is proposed,which deploys SL0 and smoothing filter for image reconstruction.Furthermore,BCS-ReSL0 algorithm is developed to use regularized SL0(ReSL0)in a reconstruction process to deal with noisy situations.The study shows that the proposed BCS-SL0 takes less execution time than the classical BCS with smoothed projected Landweber(BCS-SPL)algorithm in low measurement ratio,while achieving comparable reconstruction quality,and improving the blocking artifacts especially.The experiment results also verify that the reconstruction performance of BCS-ReSL0 is better than that of the BCSSPL in terms of noise tolerance at low measurement ratio. 展开更多
关键词 compressed sensing (CS) block smoothed l0 norm (SLO)
下载PDF
COMPRESSED SPEECH SIGNAL SENSING BASED ON THE STRUCTURED BLOCK SPARSITY WITH PARTIAL KNOWLEDGE OF SUPPORT 被引量:1
3
作者 JiYunyun YangZhen XuQian 《Journal of Electronics(China)》 2012年第1期62-71,共10页
Structural and statistical characteristics of signals can improve the performance of Compressed Sensing (CS). Two kinds of features of Discrete Cosine Transform (DCT) coefficients of voiced speech signals are discusse... Structural and statistical characteristics of signals can improve the performance of Compressed Sensing (CS). Two kinds of features of Discrete Cosine Transform (DCT) coefficients of voiced speech signals are discussed in this paper. The first one is the block sparsity of DCT coefficients of voiced speech formulated from two different aspects which are the distribution of the DCT coefficients of voiced speech and the comparison of reconstruction performance between the mixed program and Basis Pursuit (BP). The block sparsity of DCT coefficients of voiced speech means that some algorithms of block-sparse CS can be used to improve the recovery performance of speech signals. It is proved by the simulation results of the mixed program which is an improved version of the mixed program. The second one is the well known large DCT coefficients of voiced speech focus on low frequency. In line with this feature, a special Gaussian and Partial Identity Joint (GPIJ) matrix is constructed as the sensing matrix for voiced speech signals. Simulation results show that the GPIJ matrix outperforms the classical Gaussian matrix for speech signals of male and female adults. 展开更多
关键词 Compressed sensing (CS) Speech signals sensing matrix block sparsity
下载PDF
Cooperative Compressive Spectrum Sensing in Cognitive Underw ater Acoustic Communication Networks
4
作者 左加阔 陶文凤 +2 位作者 包永强 赵力 邹采荣 《Journal of Donghua University(English Edition)》 EI CAS 2015年第4期523-529,共7页
Because of the specific of underwater acoustic channel,spectrum sensing entails many difficulties in cognitive underwater acoustic communication( CUAC) networks, such as severe frequency-dependent attenuation and low ... Because of the specific of underwater acoustic channel,spectrum sensing entails many difficulties in cognitive underwater acoustic communication( CUAC) networks, such as severe frequency-dependent attenuation and low signal-to-noise ratios. To overcome these problems, two cooperative compressive spectrum sensing( CCSS) schemes are proposed for different scenarios( with and without channel state information). To strengthen collaboration among secondary users( SUs),cognitive central node( CCN) is provided to collect data from SUs. Thus,the proposed schemes can obtain spatial diversity gains and exploit joint sparse structure to improve the performance of spectrum sensing. Since the channel occupancy is sparse,we formulate the spectrum sensing problems into sparse vector recovery problems,and then present two CCSS algorithms based on path-wise coordinate optimization( PCO) and multi-task Bayesian compressive sensing( MT-BCS),respectively.Simulation results corroborate the effectiveness of the proposed methods in detecting the spectrum holes in underwater acoustic environment. 展开更多
关键词 cognitive underwater acoustic communication(CUAC) spectrum sensing compressive sensing path-wise coordinate optimization(PCO) multi-task Bayesian compressive sensing(MT-bcs)
下载PDF
THE STABLE RECONSTRUCTION OF STRONGLY-DECAYING BLOCK SPARSE SIGNALS
5
作者 Yifang YANG Jinping WANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第5期1787-1800,共14页
In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of t... In this paper,we reconstruct strongly-decaying block sparse signals by the block generalized orthogonal matching pursuit(BgOMP)algorithm in the l2-bounded noise case.Under some restraints on the minimum magnitude of the nonzero elements of the strongly-decaying block sparse signal,if the sensing matrix satisfies the the block restricted isometry property(block-RIP),then arbitrary strongly-decaying block sparse signals can be accurately and steadily reconstructed by the BgOMP algorithm in iterations.Furthermore,we conjecture that this condition is sharp. 展开更多
关键词 compressed sensing strongly-decaying block sparse signal block generalized OMP block-RIP
下载PDF
基于BCS和SVD的混合变换域双彩色图像水印算法 被引量:7
6
作者 韩绍程 王蕊 +1 位作者 张兆宁 曹芸茜 《计算机工程与设计》 北大核心 2016年第7期1841-1846,共6页
提出一种基于分块压缩感知和奇异值分解的双彩色图像水印算法。将彩色水印和载体图像分别进行RGB分离,采用分块压缩感知技术获得彩色水印在R、G、B这3个分量上的观测矩阵,实现对原始水印数据的压缩;将观测矩阵奇异值分解后的主成分以叠... 提出一种基于分块压缩感知和奇异值分解的双彩色图像水印算法。将彩色水印和载体图像分别进行RGB分离,采用分块压缩感知技术获得彩色水印在R、G、B这3个分量上的观测矩阵,实现对原始水印数据的压缩;将观测矩阵奇异值分解后的主成分以叠加扰动的方式调制在载体图像相应分量DWT-DCT混合变换后对角方向中频系数的奇异值上,DCT变换前采用Arnold变换置乱待修改的DWT中频系数,提高算法抗剪切性能。实验结果表明,该算法对噪声、中值滤波、JPEG压缩和亮度及对比度调整等攻击具有较强的鲁棒性,能抵抗一定程度的RST攻击。 展开更多
关键词 数字水印 分块压缩感知 奇异值分解 混合域 彩色图像
下载PDF
基于BCS-SPL压缩感知算法的纸病图像重构 被引量:2
7
作者 周强 胡江涛 +1 位作者 王志强 张俊涛 《中国造纸》 CAS 北大核心 2016年第12期25-30,共6页
随着造纸工业纸机速度和纸幅宽度的增长,传统的纸病检测处理方式面临着图像数据传输量剧增,纸病检测系统难以实现实时性处理的问题。压缩感知理论能够有效降低数据的采样量,但将压缩感知应用于二维纸病图像时,面临着重构纸病图像质量不... 随着造纸工业纸机速度和纸幅宽度的增长,传统的纸病检测处理方式面临着图像数据传输量剧增,纸病检测系统难以实现实时性处理的问题。压缩感知理论能够有效降低数据的采样量,但将压缩感知应用于二维纸病图像时,面临着重构纸病图像质量不高的问题。本研究采用分块压缩感知(BCS)-平滑投影Landweber(SPL)重构算法对纸病图像进行重构,并着重研究了该算法在不同采样率和不同图像分块大小下的重构效果。实验结果表明,在压缩感知框架下,通过BCS-SPL算法重构的低采样率纸病图像具有较高的图像质量,有效降低了纸病图像数据的传输量。 展开更多
关键词 压缩感知 bcs-SPL重构算法 纸病图像重构
下载PDF
基于MT-BCS的可分离DOA估计算法
8
作者 万连城 黑蕾 王迎斌 《现代电子技术》 北大核心 2019年第6期10-13,共4页
压缩感知理论的不断发展,为二维DOA估计问题提供了新的思路。然而传统的二维DOA估计方法,只是对一维估计的建模方法别无二致,这导致求解时存在计算复杂度高、分辨率低等问题。文中通过对二维DOA模型的重新建模,将多任务贝叶斯压缩感知... 压缩感知理论的不断发展,为二维DOA估计问题提供了新的思路。然而传统的二维DOA估计方法,只是对一维估计的建模方法别无二致,这导致求解时存在计算复杂度高、分辨率低等问题。文中通过对二维DOA模型的重新建模,将多任务贝叶斯压缩感知理论应用于二维DOA估计问题中,从而提出基于多任务贝叶斯压缩感知的可分离二维DOA低的优点。 展开更多
关键词 二维DOA估计 压缩感知 贝叶斯 多任务贝叶斯压缩感知 分辨率 算法复杂度
下载PDF
Multi-narrowband signals receiving method based on analog-to-information convertor and block sparsity 被引量:2
9
作者 Hongyi Xu Haiqing Jiang Chaozhu Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期643-653,共11页
The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model ... The analog-to-information convertor (AIC) is a successful practice of compressive sensing (CS) theory in the analog signal acquisition. This paper presents a multi-narrowband signals sampling and reconstruction model based on AIC and block sparsity. To overcome the practical problems, the block sparsity is divided into uniform block and non-uniform block situations, and the block restricted isometry property and sub-sampling limit in different situations are analyzed respectively in detail. Theoretical analysis proves that using the block sparsity in AIC can reduce the restricted isometric constant, increase the reconstruction probability and reduce the sub -sampling rate. Simulation results show that the proposed model can complete sub -sampling and reconstruction for multi-narrowband signals. This paper extends the application range of AIC from the finite information rate signal to the multi-narrowband signals by using the potential relevance of support sets. The proposed receiving model has low complexity and is easy to implement, which can promote the application of CS theory in the radar receiver to reduce the burden of analog-to digital convertor (ADC) and solve bandwidth limitations of ADC. 展开更多
关键词 compressive sensing (CS) block sparsity analog-to-information convertor (AIC) multi-narrowband signals
下载PDF
Image Reconstruction Based on Compressed Sensing Measurement Matrix Optimization Method 被引量:1
10
作者 Caifeng Cheng Deshu Lin 《Journal on Internet of Things》 2020年第1期47-54,共8页
In this paper,the observation matrix and reconstruction algorithm of compressed sensing sampling theorem are studied.The advantages and disadvantages of greedy reconstruction algorithm are analyzed.The disadvantages o... In this paper,the observation matrix and reconstruction algorithm of compressed sensing sampling theorem are studied.The advantages and disadvantages of greedy reconstruction algorithm are analyzed.The disadvantages of signal sparsely are preset in this algorithm.The sparsely adaptive estimation algorithm is proposed.The compressed sampling matching tracking algorithm supports the set selection and culling atomic standards to improve.The sparse step size adaptive compressed sampling matching tracking algorithm is proposed.The improved algorithm selects the sparsely as the step size to select the support set atom,and the maximum correlation value.Half of the threshold culling algorithm supports the concentration of excess atoms.The experimental results show that the improved algorithm has better power and lower image reconstruction error under the same sparsely criterion,and has higher image reconstruction quality and visual effects. 展开更多
关键词 block compressed sensing sparse representation reconstruction algorithm
下载PDF
Robust Low-Power Algorithm for Random Sensing Matrix for Wireless ECG Systems Based on Low Sampling-Rate Approach
11
作者 Mohammadreza Balouchestani Kaamran Raahemifar Sridhar krishnan 《Journal of Signal and Information Processing》 2013年第3期125-131,共7页
The main drawback of current ECG systems is the location-specific nature of the systems due to the use of fixed/wired applications. That is why there is a critical need to improve the current ECG systems to achieve ex... The main drawback of current ECG systems is the location-specific nature of the systems due to the use of fixed/wired applications. That is why there is a critical need to improve the current ECG systems to achieve extended patient’s mobility and to cover security handling. With this in mind, Compressed Sensing (CS) procedure and the collaboration of Sensing Matrix Selection (SMS) approach are used to provide a robust ultra-low-power approach for normal and abnormal ECG signals. Our simulation results based on two proposed algorithms illustrate 25% decrease in sampling-rate and a good level of quality for the degree of incoherence between the random measurement and sparsity matrices. The simulation results also confirm that the Binary Toeplitz Matrix (BTM) provides the best compression performance with the highest energy efficiency for random sensing matrix. 展开更多
关键词 sensing Matrix Power CONSUMPTION Normal and ABNORMAL ECG Signal Compressed sensing block Sparse BAYESIAN learning
下载PDF
Research on assessing compression quality taking into account the space-borne remote sensing images
12
作者 赫华颖 Zeng Yong Wang Wenyu 《High Technology Letters》 EI CAS 2015年第1期109-117,共9页
According to the remote sensing image characteristics, a set oi optimized compression quahty assessment methods is proposed on the basis of generating simulative images. Firstly, a means is put forward that generates ... According to the remote sensing image characteristics, a set oi optimized compression quahty assessment methods is proposed on the basis of generating simulative images. Firstly, a means is put forward that generates simulative images by scanning aerial films taking into account the space-borne remote sensing camera characteristics (including pixel resolution, histogram dynamic range and quantization). In the course of compression quality assessment, the objective assessment considers images texture changes and mutual relationship between simulative images and decompressed ima- ges, while the synthesized estimation factor (SEF) is brought out innovatively for the first time. Subjective assessment adopts a display setup -- 0.5mrn/pixel, which considers human visual char- acteristic and mainstream monitor. The set of methods are applied in compression plan design of panchromatic camera loaded on ZY-1-02C satellite. Through systematic and comprehensive assess- ment, simulation results show that image compression quality with the compression ratio of d:l can meet the remote sensing application requirements. 展开更多
关键词 remote sensing images compression images quality assessment blocking standard variance synthesized estimation factor (SEF) images display
下载PDF
The Convergence of Two Algorithms for Compressed Sensing Based Tomography
13
作者 Xiezhang Li Jiehua Zhu 《Advances in Computed Tomography》 2012年第3期30-36,共7页
The constrained total variation minimization has been developed successfully for image reconstruction in computed tomography. In this paper, the block component averaging and diagonally-relaxed orthogonal projection m... The constrained total variation minimization has been developed successfully for image reconstruction in computed tomography. In this paper, the block component averaging and diagonally-relaxed orthogonal projection methods are proposed to incorporate with the total variation minimization in the compressed sensing framework. The convergence of the algorithms under a certain condition is derived. Examples are given to illustrate their convergence behavior and noise performance. 展开更多
关键词 Compressed sensing Image Reconstruction TOTAL Variation MINIMIZATION block ITERATIVE Methods
下载PDF
Some Results for Exact Support Recovery of Block Joint Sparse Matrix via Block Multiple Measurement Vectors Algorithm
14
作者 Yingna Pan Pingping Zhang 《Journal of Applied Mathematics and Physics》 2023年第4期1098-1112,共15页
Block multiple measurement vectors (BMMV) is a reconstruction algorithm that can be used to recover the support of block K-joint sparse matrix X from Y = ΨX + V. In this paper, we propose a sufficient condition for a... Block multiple measurement vectors (BMMV) is a reconstruction algorithm that can be used to recover the support of block K-joint sparse matrix X from Y = ΨX + V. In this paper, we propose a sufficient condition for accurate support recovery of the block K-joint sparse matrix via the BMMV algorithm in the noisy case. Furthermore, we show the optimality of the condition we proposed in the absence of noise when the problem reduces to single measurement vector case. 展开更多
关键词 Support Recovery Compressed sensing block Multiple Measurement Vectors Algorithm block Restricted Isometry Property
下载PDF
Efficient Recovery of Block Sparse Signals by an Improved Algorithm of Block-StOMP 被引量:1
15
作者 Boxue Huang Tong Zhou 《自动化学报》 EI CSCD 北大核心 2017年第9期1607-1618,共12页
下载PDF
基于伪监督注意力短期记忆与多尺度去伪影网络的图像分块压缩感知 被引量:1
16
作者 李俊辉 侯兴松 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第2期472-480,共9页
基于深度展开网络的分块压缩感知(BCS)方法,在迭代去块伪影时通常会同时去除部分信号和保留部分块伪影,不利于信号恢复。为了改善重建性能,在学习去噪的迭代阈值(LDIT)算法基础上,该文提出基于伪监督注意力短期记忆与多尺度去伪影网络(M... 基于深度展开网络的分块压缩感知(BCS)方法,在迭代去块伪影时通常会同时去除部分信号和保留部分块伪影,不利于信号恢复。为了改善重建性能,在学习去噪的迭代阈值(LDIT)算法基础上,该文提出基于伪监督注意力短期记忆与多尺度去伪影网络(MSD-Net)的图像BCS迭代方法(PSASM-MD)。首先,在每步迭代中,利用残差网络并行地对每个图像子块单独去噪后再拼接。然后,对拼接后的图像采用含有伪监督注意力模块(PSAM)的MSD-Net进行特征提取,以更好地去除块伪影以提高重建性能。其中,PSAM被用于从含有块伪影的残差中抽取部分有用信号,并传递到下一步迭代实现短期记忆,以尽量避免去除有用信号。实验结果表明,该文方法相比现有先进的同类BCS方法在主观视觉感知和客观评价指标上均取得了更优的结果。 展开更多
关键词 分块压缩感知 短期记忆 图像去伪影 深度展开网络
下载PDF
分块压缩感知编码的重建图像改进算法
17
作者 李高平 苗加庆 邱治邦 《西南民族大学学报(自然科学版)》 CAS 2024年第1期75-83,共9页
针对待编码图像分块实施压缩感知编码重建过程耗时较长问题,不是按照观测值与观测矩阵之间的关系来设计重建算法,而是在重建时先建立码书,然后直接从它中搜索出观测值意义下均方误差最小的最佳匹配块,作为重建图像子块.为了减少搜索范围... 针对待编码图像分块实施压缩感知编码重建过程耗时较长问题,不是按照观测值与观测矩阵之间的关系来设计重建算法,而是在重建时先建立码书,然后直接从它中搜索出观测值意义下均方误差最小的最佳匹配块,作为重建图像子块.为了减少搜索范围,设置了剔除条件,设计出一个在码书中搜索最佳匹配块的限制搜索空间算法.四幅图像的仿真结果表明,重建图像质量对构成码书的原始图像不是特别敏感,具有一定的鲁棒性.它确实能够在重建图像质量有一定降低的情况下,其平均重建时间仅为正交匹配追踪算法的13.6%(16×16分块)与0.05%(32×32分块),为实时重建提供了一个较好的候选算法. 展开更多
关键词 图像重建 图像压缩感知 码书 分块压缩感知
下载PDF
基于纹理信息的图像自适应分块压缩感知算法
18
作者 左胤杰 赵君喜 《智能计算机与应用》 2024年第7期128-135,共8页
针对传统分块压缩感知算法中对各图像块分配相同采样率,限制图像重构质量的问题,本文提出一种基于纹理信息的采样率自适应分块压缩感知算法。在观测端将图像一维灰度熵和标准差作为纹理信息量的衡量标准,使用K-means++算法将图像块按照... 针对传统分块压缩感知算法中对各图像块分配相同采样率,限制图像重构质量的问题,本文提出一种基于纹理信息的采样率自适应分块压缩感知算法。在观测端将图像一维灰度熵和标准差作为纹理信息量的衡量标准,使用K-means++算法将图像块按照纹理信息的相似性分为3类;结合边缘信息为3类图像块分配自适应采样率,并进行采样率二次分配;在重构端为缓解重构图像产生的块效应,采用分层分块结构结合改进的平滑投影Landweber算法进行重构。实验结果表明:在不同的采样率下,本算法重构图像在客观重构质量和主观视觉效果上均有一定提升,重构图像的块效应也得到缓解。 展开更多
关键词 分块压缩感知 自适应采样率 纹理信息 平滑投影Landweber算法 块效应
下载PDF
基于按列分块和混合分块的压缩感知图像重构方法
19
作者 曹唯一 许爽 +1 位作者 唐青 陈志强 《激光杂志》 CAS 北大核心 2024年第4期108-113,共6页
压缩感知理论由于其可通过低采样率来恢复原始信号的特点,近年来逐步被用于光学成像领域。为了解决在对成像图像进行压缩感知重构时数据量过大、计算负担大的问题,分块压缩感知的方法被提出。在该方法的基础上做出改进,依次提出了按列... 压缩感知理论由于其可通过低采样率来恢复原始信号的特点,近年来逐步被用于光学成像领域。为了解决在对成像图像进行压缩感知重构时数据量过大、计算负担大的问题,分块压缩感知的方法被提出。在该方法的基础上做出改进,依次提出了按列分块和混合分块的压缩感知方法。其中按列分块的方式改变了分块模式,降低分块时的要求,混合分块则结合两种分块的特点,有效提升了压缩感知的效果。通过仿真实验验证,本方法有效提升了图像重构质量,尤其是混合分块方式,在图像的重构速度和重构质量上都有显著提升。 展开更多
关键词 压缩感知 分块方式 图像处理 图像重构 混合分块
下载PDF
Model-guided measurement-side control for quantized block compressive sensing
20
作者 Tang Hainie Liu Hao +2 位作者 Huang Rong Deng Kailian Sun Shaoyuan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2019年第2期82-90,共9页
To progressively provide the competitive rate-distortion performance for aerial imagery,a quantized block compressive sensing(QBCS) framework is presented,which incorporates two measurement-side control parameters:mea... To progressively provide the competitive rate-distortion performance for aerial imagery,a quantized block compressive sensing(QBCS) framework is presented,which incorporates two measurement-side control parameters:measurement subrate(S) and quantization depth(D).By learning how different parameter combinations may affect the quality-bitrate characteristics of aerial images,two parameter allocation models are derived between a bitrate budget and its appropriate parameters.Based on the corresponding allocation models,a model-guided image coding method is proposed to pre-determine the appropriate(S,D) combination for acquiring an aerial image via QBCS.The data-driven experimental results show that the proposed method can achieve near-optimal quality-bitrate performance under the QBCS framework. 展开更多
关键词 block compressive sensing (bcs) MEASUREMENT subrate quantization depth quality-bitrate AERIAL image
原文传递
上一页 1 2 13 下一页 到第
使用帮助 返回顶部